NONSYMMETRIC MACDONALD POLYNOMIALS;
STANDARD MONOMIAL THEORY;
Q-ANALOG;
GREEN POLYNOMIALS;
LINE BUNDLES;
REPRESENTATIONS;
COHOMOLOGY;
VARIETIES;
THEOREM;
SINGULARITIES;
D O I:
10.1007/s00222-024-01237-5
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Catalan functions, the graded Euler characteristics of certain vector bundles on the flag variety, are a rich class of symmetric functions which include k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k$\end{document}-Schur functions and parabolic Hall-Littlewood polynomials. We prove that Catalan functions indexed by partition weight are the characters of Uq(sll)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U_{q}(\widehat{\mathfrak{sl}}_{\ell })$\end{document}-generalized Demazure crystals as studied by Lakshmibai-Littelmann-Magyar and Naoi. We obtain Schur positive formulas for these functions, settling conjectures of Chen-Haiman and Shimozono-Weyman. Our approach more generally gives key positive formulas for graded Euler characteristics of certain vector bundles on Schubert varieties by matching them to characters of generalized Demazure crystals.