Anodes for Li-ion batteries based on titanium fluorides

被引:0
作者
Astrova, Ekaterina V. [1 ]
Parfeneva, Alesya V. [1 ,2 ]
Li, Galina V. [1 ]
Ulin, Vladimir P. [1 ]
Yagovkina, Maria A. [1 ]
Nashchekin, Alexey V. [1 ]
Beregulin, Eugene V. [1 ]
Rumyantsev, Aleksander M. [1 ]
机构
[1] Russian Acad Sci, Ioffe Inst, St Petersburg, Russia
[2] Russian Acad Sci, Ioffe Inst, Politekhn Skaya 26, St Petersburg 194021, Russia
关键词
coulomb efficiency; GITT; Li-ion batteries; negative electrodes; superreversibility; titanium oxyfluoride; titanium trifluoride; METAL FLUORIDES; LITHIUM; IMPEDANCE; STORAGE;
D O I
10.1002/est2.594
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The work is devoted to a comparative study of the electrochemical behavior and molecular level transformations in TiF3 and TiOF2 electrodes of Li-ion batteries at charge-discharge processes. Based on analysis of the electrode voltage profiles, we propose possible redox reactions which occur with the change of Ti oxidizing state. According to these models, titanium trifluoride has a reversible capacity of 600 mAh/g, TiOF2 of 395 mAh/g. It has been shown that titanium oxyfluoride is characterized by a long cycle life while specific capacity of the titanium trifluoride rapidly degrades. The degradation of TiF3 is associated with a temporal molecular ordering and decrease in the chemical activity of titanium and lithium fluoride formed during the reversible introduction of lithium. The related effect lies under the superreversibility phenomenon in TiOF2 electrodes (Coulomb efficiency more than 100%). The dependences of the equilibrium voltage and chemical diffusion coefficient of Li on the concentration of Li were determined from GITT analysis.
引用
收藏
页数:12
相关论文
共 50 条
[31]   NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries [J].
Trill, Jan-Henning ;
Tao, Chuangqi ;
Winter, Martin ;
Passerini, Stefano ;
Eckert, Hellmut .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (02) :349-356
[32]   Highly adhesive and stretchable binder for silicon-based anodes in Li-ion batteries [J].
Tang, Ruixian ;
Zheng, Xiao ;
Zhang, Yu ;
Ma, Lei ;
Dong, Yanru ;
Kong, Guolong ;
Wei, Liangming .
IONICS, 2020, 26 (12) :5889-5896
[33]   Progress of NiO-based anodes for high-performance Li-ion batteries [J].
Zhou, Guolang ;
Ding, Wenhao ;
Guan, Yu ;
Wang, Tianshi ;
Liu, Cheng ;
Zhang, Lili ;
Yin, Jingzhou ;
Fu, Yongsheng .
CHEMICAL RECORD, 2022, 22 (10)
[34]   X-ray study of metal oxide based anodes for Li-ion batteries [J].
Paul A. Connor ;
John T. S. Irvine .
Ionics, 2000, 6 :428-433
[35]   Thin Film Nanostructured ATO and ATO Based Composite Anodes for Li-Ion Batteries [J].
Cevher, O. ;
Guler, M. O. ;
Tocoglu, U. ;
Cetinkaya, T. ;
Akbulut, H. ;
Okumus, S. C. .
ACTA PHYSICA POLONICA A, 2014, 125 (02) :296-298
[36]   Application of silicon zig-zag wall arrays for anodes of Li-ion batteries [J].
Li, G. V. ;
Rumyantsev, A. M. ;
Levitskii, V. S. ;
Beregulin, E. V. ;
Zhdanov, V. V. ;
Terukov, E. I. ;
Astrova, E. V. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (01)
[37]   Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries [J].
He, Xiaojie ;
Tang, Anwen ;
Li, Yi ;
Zhang, Yongfan ;
Chen, Wenkai ;
Huang, Shuping .
APPLIED SURFACE SCIENCE, 2021, 563
[38]   Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries [J].
Kang, Sung-Jin ;
Park, Kisung ;
Park, Seong-Hyo ;
Lee, Hochun .
ELECTROCHIMICA ACTA, 2018, 259 :949-954
[39]   Preparation and Electrochemical Characterization of High-Stability MnO Anodes for Li-Ion Batteries [J].
Carbonari, G. ;
Maroni, F. ;
Pasqualini, M. ;
Tossici, R. ;
Nobili, F. .
ELECTROCHIMICA ACTA, 2017, 247 :392-399
[40]   Nanostructured silicon/silicide/carbon composite anodes with controllable voids for Li-ion batteries [J].
Kang, Inyeong ;
Jang, Juyoung ;
Kim, Moon-Soo ;
Park, Jin-Woo ;
Kim, Jae-Hun ;
Cho, Young Whan .
MATERIALS & DESIGN, 2017, 120 :230-237