Anodes for Li-ion batteries based on titanium fluorides

被引:1
作者
Astrova, Ekaterina V. [1 ]
Parfeneva, Alesya V. [1 ,2 ]
Li, Galina V. [1 ]
Ulin, Vladimir P. [1 ]
Yagovkina, Maria A. [1 ]
Nashchekin, Alexey V. [1 ]
Beregulin, Eugene V. [1 ]
Rumyantsev, Aleksander M. [1 ]
机构
[1] Russian Acad Sci, Ioffe Inst, St Petersburg, Russia
[2] Russian Acad Sci, Ioffe Inst, Politekhn Skaya 26, St Petersburg 194021, Russia
关键词
coulomb efficiency; GITT; Li-ion batteries; negative electrodes; superreversibility; titanium oxyfluoride; titanium trifluoride; METAL FLUORIDES; LITHIUM; IMPEDANCE; STORAGE;
D O I
10.1002/est2.594
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The work is devoted to a comparative study of the electrochemical behavior and molecular level transformations in TiF3 and TiOF2 electrodes of Li-ion batteries at charge-discharge processes. Based on analysis of the electrode voltage profiles, we propose possible redox reactions which occur with the change of Ti oxidizing state. According to these models, titanium trifluoride has a reversible capacity of 600 mAh/g, TiOF2 of 395 mAh/g. It has been shown that titanium oxyfluoride is characterized by a long cycle life while specific capacity of the titanium trifluoride rapidly degrades. The degradation of TiF3 is associated with a temporal molecular ordering and decrease in the chemical activity of titanium and lithium fluoride formed during the reversible introduction of lithium. The related effect lies under the superreversibility phenomenon in TiOF2 electrodes (Coulomb efficiency more than 100%). The dependences of the equilibrium voltage and chemical diffusion coefficient of Li on the concentration of Li were determined from GITT analysis.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Reduction mechanisms of additives on Si anodes of Li-ion batteries [J].
de la Hoz, Julibeth M. Martinez ;
Balbuena, Perla B. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (32) :17091-17098
[22]   A review study on titanium niobium oxide-based composite anodes for Li-ion batteries: Synthesis, structure, and performance [J].
Aghamohammadi, Hamed ;
Hassanzadeh, Nafiseh ;
Eslami-Farsani, Reza .
CERAMICS INTERNATIONAL, 2021, 47 (19) :26598-26619
[23]   High capacity conversion anodes in Li-ion batteries: A review [J].
Bhatt, Mahesh Datt ;
Lee, Jin Yong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (21) :10852-10905
[24]   Galactomannan binding agents for silicon anodes in Li-ion batteries [J].
Dufficy, Martin K. ;
Khan, Saad A. ;
Fedkiw, Peter S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (22) :12023-12030
[25]   SOLID ELECTROLYTE INTER-PHASE ON GRAPHITE ANODES IN Li-ION BATTERIES [J].
Huang, L. H. ;
Min, Z. H. ;
Zhang, Q. Y. .
REVIEWS ON ADVANCED MATERIALS SCIENCE, 2014, 36 (01) :13-20
[26]   Evaluation of Selected Ionic Liquids as Electrolytes for Silicon Anodes in Li-Ion Batteries [J].
Rogstad, Daniel Tevik ;
Einarsrud, Mari-Ann ;
Svensson, Ann Mari .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (11)
[27]   Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries [J].
Laurenti, M. ;
Garino, N. ;
Porro, S. ;
Fontana, M. ;
Gerbaldi, C. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 640 :321-326
[28]   Temperature dependent electrochemical performance of graphite anodes for K-ion and Li-ion batteries [J].
Adams, Ryan A. ;
Varma, Arvind ;
Pol, Vilas G. .
JOURNAL OF POWER SOURCES, 2019, 410 :124-131
[29]   A film maturation process for improving the cycle life of Si-based anodes for Li-ion batteries [J].
Hernandez, C. Reale ;
Karkar, Z. ;
Guyomard, D. ;
Lestriez, B. ;
Roue, L. .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 61 :102-105
[30]   NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries [J].
Trill, Jan-Henning ;
Tao, Chuangqi ;
Winter, Martin ;
Passerini, Stefano ;
Eckert, Hellmut .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (02) :349-356