Control of intense light with avalanche-ionization plasma gratings

被引:5
作者
Edwards, M. R. [1 ,2 ]
Aczynski, S. W. [3 ]
Ockafellow, E. R. [3 ]
Anzo, L. M. [1 ]
Ingale, A. Z. [3 ]
Ichel, P. M. [1 ]
Milchberg, H. M. [3 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
来源
OPTICA | 2023年 / 10卷 / 12期
基金
美国国家科学基金会;
关键词
COMPRESSION; PHYSICS; PULSES; BEAMS;
D O I
10.1364/OPTICA.503283
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-peak-power lasers are fundamental to high-field science: increased laser intensity has enabled laboratory astrophysics, relativistic plasma physics, and compact laser-based particle accelerators. However, the meter-scale optics required for multi-petawatt lasers to avoid light-induced damage make further increases in power challenging. Plasma tolerates orders-of-magnitude higher light flux than glass, but previous efforts to miniaturize lasers by constructing plasma analogs for conventional optics were limited by low efficiency and poor optical quality. We describe a new approach to plasma optics based on avalanche ionization of atomic clusters that produces plasma volume transmission gratings with dramatically increased diffraction efficiency. We measure an average efficiency of up to 36% and a singleshot efficiency of up to 60%, which is comparable to key components of high-power laser beamlines, while maintaining high spatial quality and focusability. These results suggest that plasma diffraction gratings may be a viable component of future lasers with peak power beyond 10 PW.
引用
收藏
页码:1587 / 1594
页数:8
相关论文
共 57 条
  • [1] Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime
    Andreev, A. A.
    Riconda, C.
    Tikhonchuk, V. T.
    Weber, S.
    [J]. PHYSICS OF PLASMAS, 2006, 13 (05)
  • [2] Boyd RW, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
  • [3] THE LIGHT FANTASTIC
    Cartlidge, Edwin
    [J]. SCIENCE, 2018, 359 (6374) : 382 - 385
  • [4] Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications
    Chen, Hui
    Fiuza, F.
    Link, A.
    Hazi, A.
    Hill, M.
    Hoarty, D.
    James, S.
    Kerr, S.
    Meyerhofer, D. D.
    Myatt, J.
    Park, J.
    Sentoku, Y.
    Williams, G. J.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (21)
  • [5] Femtosecond filamentation in transparent media
    Couairon, A.
    Mysyrowicz, A.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 441 (2-4): : 47 - 189
  • [6] Extremely high-intensity laser interactions with fundamental quantum systems
    Di Piazza, A.
    Mueller, C.
    Hatsagortsyan, K. Z.
    Keitel, C. H.
    [J]. REVIEWS OF MODERN PHYSICS, 2012, 84 (03) : 1177 - 1228
  • [7] Dynamics of plasma gratings in atomic and molecular gases
    Durand, M.
    Jarnac, A.
    Liu, Y.
    Prade, B.
    Houard, A.
    Tikhonchuk, V.
    Mysyrowicz, A.
    [J]. PHYSICAL REVIEW E, 2012, 86 (03):
  • [8] Experimental observation of a traveling plasma grating formed by two crossing filaments in gases
    Durand, Magali
    Liu, Yi
    Forestier, Benjamin
    Houard, Aurelien
    Mysyrowicz, Andre
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (12)
  • [9] Holographic Plasma Lenses
    Edwards, M. R.
    Munirov, V. R.
    Singh, A.
    Fasano, N. M.
    Kur, E.
    Lemos, N.
    Mikhailova, J. M.
    Wurtele, J. S.
    Michel, P.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (06)
  • [10] A multi-terawatt two-color beam for high-power field-controlled nonlinear optics
    Edwards, M. R.
    Fasano, N. M.
    Bennett, T.
    Griffith, A.
    Turley, N.
    O'Brien, B. M.
    Mikhailova, J. M.
    [J]. OPTICS LETTERS, 2020, 45 (23) : 6542 - 6545