Temporal-Channel Topology Enhanced Network for Skeleton-Based Action Recognition

被引:0
作者
Luo, Jinzhao [1 ,2 ]
Zhou, Lu [1 ,2 ]
Zhu, Guibo [1 ,2 ,3 ]
Ge, Guojing [1 ]
Yang, Beiying [1 ,2 ]
Wang, Jinqiao [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, Fdn Model Res Ctr, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Wuhan AI Res, Wuhan 430073, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518066, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT I | 2024年 / 14425卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
human skeleton; action recognition; topology modeling;
D O I
10.1007/978-981-99-8429-9_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition has become popular in recent years due to its efficiency and robustness. Most current methods adopt graph convolutional network (GCN) for topology modeling, but GCN-based methods are limited in long-distance correlation modeling and generalizability. In contrast, the potential of convolutional neural network (CNN) for topology modeling has not been fully explored. In this paper, we propose a novel CNN architecture, Temporal-Channel Topology Enhanced Network (TCTE-Net), to learn spatial and temporal topologies for skeleton-based action recognition. The TCTE-Net consists of two modules: the Temporal-Channel Focus module, which learns a temporal-channel focus matrix to identify the most important feature representations, and the Dynamic Channel Topology Attention module, which dynamically learns spatial topological features, and fuses them with an attention mechanism to model long-distance channel-wise topology. We conduct experiments on NTU RGB+D, NTU RGB+D 120, and FineGym datasets. TCTE-Net shows state-of-the-art performance compared to CNN-based methods and achieves superior performance compared to GCN-based methods. The code is available at https://github. com/aikuniverse/TCTE-Net.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 50 条
  • [41] Skeleton-based action recognition via spatial and temporal transformer networks
    Plizzari, Chiara
    Cannici, Marco
    Matteucci, Matteo
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 208 (208-209)
  • [42] Information Enhanced Graph Convolutional Networks for Skeleton-based Action Recognition
    Sun, Dengdi
    Zeng, Fanchen
    Luo, Bin
    Tang, Jin
    Ding, Zhuanlian
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [43] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Zhu, Qilin
    Deng, Hongmin
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17796 - 17808
  • [44] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [45] Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based Action Recognition
    Chen, Tailin
    Zhou, Desen
    Wang, Jian
    Wang, Shidong
    Guan, Yu
    He, Xuming
    Ding, Errui
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4334 - 4342
  • [46] Multi-temporal scale aggregation refinement graph convolutional network for skeleton-based action recognition
    Li, Xuanfeng
    Lu, Jian
    Zhou, Jian
    Liu, Wei
    Zhang, Kaibing
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2024, 35 (01)
  • [47] HMANet: Hyperbolic Manifold Aware Network for Skeleton-Based Action Recognition
    Chen, Jinghong
    Zhao, Chong
    Wang, Qicong
    Meng, Hongying
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (02) : 602 - 614
  • [48] Multi-scale spatial-temporal convolutional neural network for skeleton-based action recognition
    Cheng, Qin
    Cheng, Jun
    Ren, Ziliang
    Zhang, Qieshi
    Liu, Jianming
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 1303 - 1315
  • [49] Pyramidal Graph Convolutional Network for Skeleton-Based Human Action Recognition
    Li, Fanjia
    Zhu, Aichun
    Liu, Zhongyu
    Huo, Yu
    Xu, Yonggang
    Hua, Gang
    IEEE SENSORS JOURNAL, 2021, 21 (14) : 16183 - 16191
  • [50] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Qilin Zhu
    Hongmin Deng
    Applied Intelligence, 2023, 53 : 17796 - 17808