Simulation of cross-pedestrian flow in intersection based on direction fuzzy visual field

被引:0
作者
Li, Shiwei [1 ]
Li, Qianqian [1 ]
Xu, Jiao [1 ]
Zhang, Yuzhao [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Traff & Transportat, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
cellular automata; fuzzy systems; pedestrians; simulation; COLLECTIVE BEHAVIOR; CELLULAR-AUTOMATON; EVACUATION; MODEL; DYNAMICS;
D O I
10.1049/itr2.12486
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Pedestrian flow refers to the spatiotemporal distribution of people moving in a defined area. At crosswalks, pedestrian dynamics exhibit complex self-organization patterns resulting from interactions between individuals. This paper proposes a novel crosswalk pedestrian flow model based on the concept of directional fuzzy visual field (DFVF) to capture pedestrian heterogeneity. The DFVF defines fuzzy distributions of personal space and information processing capabilities, enabling improved representation of diversity compared to previous models. Incorporating k-nearest neighbour rules in the DFVF pedestrian network topology also better mimics real-world interactions. Using a cellular automata framework, pedestrian self-organization effects like stratification and bottleneck oscillation are simulated at intersections. The model replicates empirically observed dynamics of density, velocity, and evacuation time. Results demonstrate that controlling pedestrian conflicts can effectively enhance crosswalk flow efficiency. This research introduces new techniques for simulating pedestrian psychology and behaviour, providing a valuable contribution to pedestrian flow theory and supporting crosswalk design optimization. The study found that the movement efficiency of cross pedestrian flow can effectively improve by controlling the pedestrian conflict in the crossing region. image
引用
收藏
页码:1045 / 1067
页数:23
相关论文
共 41 条
[1]   Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia [J].
Al-Ahmadi, Khalid ;
See, Linda ;
Heppenstall, Alison ;
Hogg, James .
ECOLOGICAL COMPLEXITY, 2009, 6 (02) :80-101
[2]   Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study [J].
Ballerini, M. ;
Calbibbo, N. ;
Candeleir, R. ;
Cavagna, A. ;
Cisbani, E. ;
Giardina, I. ;
Lecomte, V. ;
Orlandi, A. ;
Parisi, G. ;
Procaccini, A. ;
Viale, M. ;
Zdravkovic, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1232-1237
[3]  
Bandini S, 2014, AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, P1541
[4]   Emergent fundamental pedestrian flows from cellular automata microsimulation [J].
Blue, VJ ;
Adler, JL .
TRAFFIC FLOW THEORY: SIMULATION MODELS, MACROSCOPIC FLOW RELATIONSHIPS, AND FLOW ESTIMATION AND PREDICTION, 1998, (1644) :29-36
[5]  
Blue VJ, 2000, TRANSPORT RES REC, P20
[6]   Cellular automata microsimulation for modeling bi-directional pedestrian walkways [J].
Blue, VJ ;
Adler, JL .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2001, 35 (03) :293-312
[7]  
Blue VJ, 1997, IEEE SYS MAN CYBERN, P2320, DOI 10.1109/ICSMC.1997.635272
[8]   Simulation of pedestrian dynamics using a two-dimensional cellular automaton [J].
Burstedde, C ;
Klauck, K ;
Schadschneider, A ;
Zittartz, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 295 (3-4) :507-525
[9]   Fundamental diagrams for multidirectional pedestrian flows [J].
Cao, Shuchao ;
Seyfried, Armin ;
Zhang, Jun ;
Holl, Stefan ;
Song, Weiguo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
[10]   A multi-grid model for pedestrian evacuation in a room without visibility [J].
Cao, Shuchao ;
Song, Weiguo ;
Lv, Wei ;
Fang, Zhiming .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 436 :45-61