Predicting miRNA-Disease Associations From miRNA-Gene-Disease Heterogeneous Network With Multi-Relational Graph Convolutional Network Model

被引:23
|
作者
Peng, Wei [1 ,2 ]
Che, Zicheng [1 ]
Dai, Wei [1 ,2 ]
Wei, Shoulin [1 ,2 ]
Lan, Wei [3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Comp Technol Applicat Key Lab Yunnan Prov, Kunming 650500, Yunnan, Peoples R China
[3] Guangxi Univ, Sch Comp Elect & Informat, Nanning 530004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Disease; heterogeneous network embedding; MiRNA; MiRNA-disease association prediction; multi-relational graph convolutional network; MICRORNA;
D O I
10.1109/TCBB.2022.3187739
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
MiRNAs are reported to be linked to the pathogenesis of human complex diseases. Disease-related miRNAs may serve as novel bio-marks and drug targets. This work focuses on designing a multi-relational Graph Convolutional Network model to predict miRNA-disease associations (HGCNMDA) from a Heterogeneous network. HGCNMDA introduces a gene layer to construct a miRNA-gene-disease heterogeneous network. We refine the features of nodes into initial and inductive features so that the direct and indirect associations between diseases and miRNA can be considered simultaneously. Then HGCNMDA learns feature embeddings for miRNAs and disease through a multi-relational graph convolutional network model that can assign appropriate weights to different types of edges in the heterogeneous network. Finally, the miRNA-disease associations were decoded by the inner product between miRNA and disease feature embeddings. We apply our model to predict human miRNA-disease associations. The HGCNMDA is superior to the other state-of-the-art models in identifying missing miRNA-disease associations and also performs well on recommending related miRNAs/diseases to new diseases/ miRNAs. The codes are available at https://github.com/weiba/HGCNMDA.
引用
收藏
页码:3363 / 3375
页数:13
相关论文
共 50 条
  • [1] A Multi-Relational Graph Encoder Network for Fine-Grained Prediction of MiRNA-Disease Associations
    Yu, Shengpeng
    Wang, Hong
    Li, Jing
    Zhao, Jun
    Liang, Cheng
    Sun, Yanshen
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (01) : 45 - 56
  • [2] A Heterogeneous Graph Convolutional Network-Based Deep Learning Model to Identify miRNA-Disease Association
    Che, Zicheng
    Peng, Wei
    Dai, Wei
    Wei, Shoulin
    Lan, Wei
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2021, 2021, 13064 : 130 - 141
  • [4] PMDAGS: Predicting miRNA-Disease Associations With Graph Nonlinear Diffusion Convolution Network and Similarities
    Yan, Cheng
    Duan, Guihua
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (03) : 394 - 404
  • [5] Predicting miRNA-Disease Association Based on Modularity Preserving Heterogeneous Network Embedding
    Peng, Wei
    Du, Jielin
    Dai, Wei
    Lan, Wei
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [6] Predicting miRNA-Disease Associations Based on Heterogeneous Graph Attention Networks
    Ji, Cunmei
    Wang, Yutian
    Ni, Jiancheng
    Zheng, Chunhou
    Su, Yansen
    FRONTIERS IN GENETICS, 2021, 12
  • [7] Predicting miRNA-disease associations based on graph random propagation network and attention network
    Zhong, Tangbo
    Li, Zhengwei
    You, Zhu-Hong
    Nie, Ru
    Zhao, Huan
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [8] Predicting miRNA-disease associations using a hybrid feature representation in the heterogeneous network
    Liu, Minghui
    Yang, Jingyi
    Wang, Jiacheng
    Deng, Lei
    BMC MEDICAL GENOMICS, 2020, 13 (Suppl 10)
  • [9] Deep-belief network for predicting potential miRNA-disease associations
    Chen, Xing
    Li, Tian-Hao
    Zhao, Yan
    Wang, Chun-Chun
    Zhu, Chi-Chi
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03)
  • [10] Predicting miRNA-disease associations based on PPMI and attention network
    Xie, Xuping
    Wang, Yan
    He, Kai
    Sheng, Nan
    BMC BIOINFORMATICS, 2023, 24 (01)