Grundy Total Hop Dominating Sequences in Graphs

被引:10
作者
Hassan, Javier A. [1 ]
Canoy Jr, Sergio R. [2 ,3 ]
机构
[1] Coll Arts & Sci, MSU Tawi Tawi Coll Technol & Oceanog Bongao, Math & Sci Dept, Tawi Tawi, Philippines
[2] MSU Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Iligan 9200, Philippines
[3] PRISM MSU Iligan Inst Technol, Ctr Math & Theoret Phys Sci, Iligan 9200, Philippines
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2023年 / 16卷 / 04期
关键词
total hop domination; total hop domination number; open hop neighborhood sequence; Grundy total hop dominating sequence; Grundy total hop domination number;
D O I
10.29020/nybg.ejpam.v16i4.4877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V(G), E(G)) be an undirected graph with gamma(C) not equal 1 for each component C of G. Let S = (v(1), v(2), center dot center dot center dot, v(k)) be a sequence of distint vertices of a graph G, and let (S) over cap = {v(1), v(2), . . . , v(k)}. Then S is a legal open hop neighborhood sequence if N-G(2)(v(i)) \ boolean OR(i-1)(j=1) N-G(2)(v(j)) not equal circle divide for every i is an element of{2, . . . , k}. If, in addition, (S) over cap is a total hop dominating set of G, then S is a Grundy total hop dominating sequence. The maximum length of a Grundy total hop dominating sequence in a graph G, denoted by gamma(th)(gr)(G), is the Grundy total hop domination number of G. In this paper, we show that the Grundy total hop domination number of a graph G is between the total hop domination number and twice the Grundy hop domination number of G. Moreover, determine values or bounds of the Grundy total hop domination number of some graphs.
引用
收藏
页码:2597 / 2612
页数:16
相关论文
共 21 条
[1]   Bounds on the hop domination number of a tree [J].
Ayyaswamy, S. K. ;
Krishnakumari, B. ;
Natarajan, C. ;
Venkatakrishnan, Y. B. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04) :449-455
[2]  
Ayyaswamy S. K., 2018, International Journal of Pure and Applied Mathematics, V119, P11465
[3]   Total dominating sequences in graphs [J].
Bresar, Batjan ;
Henning, Michael A. ;
Rall, Douglas F. .
DISCRETE MATHEMATICS, 2016, 339 (06) :1665-1676
[4]   ON GRUNDY TOTAL DOMINATION NUMBER IN PRODUCT GRAPHS [J].
Bresar, Bostjan ;
Bujtas, Csilla ;
Gologranc, Tanja ;
Klavzar, Sandi ;
Kosmrlj, Gasper ;
Marc, Tilen ;
Patkos, Balazs ;
Tuza, Zsolt ;
Vizer, Mate .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) :225-247
[5]   Grundy domination and zero forcing in Kneser graphs [J].
Bresar, Bostjan ;
Kos, Tim ;
Daniel Tones, Pablo .
ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) :419-430
[6]   Dominating sequences in graphs [J].
Bresar, Bostjan ;
Gologranc, Tanja ;
Milanic, Martin ;
Rall, Douglas F. ;
Rizzi, Romeo .
DISCRETE MATHEMATICS, 2014, 336 :22-36
[7]   Hop Dominating Sets in Graphs Under Binary Operations [J].
Canoy, Sergio R., Jr. ;
Mollejon, Reynaldo, V ;
Canoy, John Gabriel E. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04) :1455-1463
[8]   TOTAL DOMINATION IN GRAPHS [J].
COCKAYNE, EJ ;
DAWES, RM ;
HEDETNIEMI, ST .
NETWORKS, 1980, 10 (03) :211-219
[9]  
Divya Rashmi S., 2016, Int. J Advance Soft Compu. Appl, V8, P79
[10]   Connected Grundy Hop Dominating Sequences in Graphs [J].
Hassan, Javier A. ;
Canoy, Sergio R. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (02) :1212-1227