On the standing wave in coupled fractional Klein-Gordon equation

被引:0
作者
Guo, Zhenyu [1 ]
Zhang, Xin [2 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
[2] Tongliao New City 1 Middle Sch, Tongliao 028000, Peoples R China
关键词
Standing wave; ground state; fractional Klein-Gordon equations; GLOBAL EXISTENCE; NONEXISTENCE; INSTABILITY; SCHRODINGER; REGULARITY; STABILITY; SYSTEM;
D O I
10.1515/gmj-2023-2089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to deal with the standing wave problems in coupled nonlinear fractional Klein-Gordon equations. First, we establish the constrained minimizations for a single nonlinear fractional Laplace equation. Then we prove the existence of a standing wave with a ground state using a variational argument. Next, applying the potential well argument and the concavity method, we obtain the sharp criterion for blowing up and global existence. Finally, we show the instability of the standing wave.
引用
收藏
页码:405 / 421
页数:17
相关论文
共 29 条
[1]  
Badiale M, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-85729-227-8
[2]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[3]   Non-local gradient dependent operators [J].
Bjorland, C. ;
Caffarelli, L. ;
Figalli, A. .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1859-1894
[4]  
Bogdan K, 1997, STUD MATH, V123, P43
[5]   Variational problems with free boundaries for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Roquejoffre, Jean-Michel ;
Sire, Yannick .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) :1151-1179
[6]   A Fully Discrete Spectral Method for the Nonlinear Time Fractional Klein-Gordon Equation [J].
Chen, Hu ;
Lu, Shujuan ;
Chen, Wenping .
TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (01) :231-251
[7]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[8]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[9]   ON THE SPECTRAL STABILITY OF GROUND STATES OF SEMI-LINEAR SCHRODINGER AND KLEIN-GORDON EQUATIONS WITH FRACTIONAL DISPERSION [J].
Feng, Wen ;
Stanislavova, Milena ;
Stefanov, Atanas .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (04) :1371-1385
[10]   Uniqueness of Radial Solutions for the Fractional Laplacian [J].
Frank, Rupert L. ;
Lenzmann, Enno ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (09) :1671-1726