Rapid and sensitive detection of two fungal pathogens in soybeans using the recombinase polymerase amplification/CRISPR-Cas12a method for potential on-site disease diagnosis

被引:14
|
作者
Sun, Xiwen [1 ,2 ]
Lei, Rong [1 ]
Zhang, Haipeng [3 ]
Chen, Wujian [4 ]
Jia, Qianwen [5 ]
Guo, Xing [5 ]
Zhang, Yongjiang [1 ]
Wu, Pinshan [1 ]
Wang, Xinyi [5 ]
机构
[1] Chinese Acad Inspect & Quarantine, Beijing, Peoples R China
[2] Shenyang Agr Univ, Shenyang, Peoples R China
[3] Huangpu Customs Technol Ctr, Guangzhou, Peoples R China
[4] Tech Ctr Hangzhou Customs, Hangzhou, Peoples R China
[5] Dalian Univ, Sch Life & Hlth, Dalian, Liaoning, Peoples R China
关键词
RPA; CRISPR-Cas12a; on-site diagnosis; Diaporthe aspalathi; Diaporthe caulivora; DIAPORTHE-PHASEOLORUM; STEM CANKER; PHOMOPSIS-LONGICOLLA; SEED DECAY; CAULIVORA; TIME; AREA;
D O I
10.1002/ps.7847
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
BACKGROUND: Diaporthe aspalathi and Diaporthe caulivora are two of the fungal pathogens causing soybean stem canker (SSC) in soybean, which is one of the most widespread diseases in soybean growing regions and can cause 100% loss of yield. Current methods for the detection of fungal pathogens, including morphological identification and molecular detection, are mostly limited by the need for professional laboratories and staff. To develop a detection method for potential on-site diagnosis for two of the fungal pathogens causing SSC, we designed a rapid assay combining recombinase polymerase amplification (RPA) and CRISPR-Cas12a-based diagnostics to specifically detect D. aspalathi and D. caulivora. RESULTS: The translation elongation factor 1-alpha gene was employed as the target gene to evaluate the specificity and sensitivity of this assay. The RPA/CRISPR-Cas12a system has excellent specificity to distinguish D. aspalathi and D. caulivora from closely related species. The sensitivities of RPA/CRISPR-Cas12a-based fluorescence detection and lateral flow assay for D. aspalathi and D. caulivora are 14.5 copies and 24.6 copies, respectively. This assay can detect hyphae in inoculated soybean stems at 12 days after inoculation and has a recovery as high as 86% for hyphae-spiked soybean seed powder. The total time from DNA extraction to detection was not more than 60 min. CONCLUSION: The method developed for rapid detection of plant pathogens includes DNA extraction with magnetic beads or rapid DNA extraction, isothermal nucleic acid amplification at 39 degree celsius, CRISPR-Cas12a cleavage reaction at 37 degree celsius, and lateral flow assay or endpoint fluorescence visualization at room temperature. The RPA and CRISPR-Cas12a reagents can be preloaded in the microcentrifuge tube to simplify the procedures in the field. Both RPA and CRISPR-Cas12a reaction can be realized on a portable incubator, and the results are visualized using lateral flow strips or portable flashlight. This method requires minimal equipment and operator training, and has promising applications for rapid on-site disease screening, port inspection, or controlling fungal pathogen transmission in crop.(c) 2023 Society of Chemical Industry.
引用
收藏
页码:1168 / 1181
页数:14
相关论文
共 50 条
  • [21] CRISPR/Cas12a Coupled With Recombinase Polymerase Amplification for Sensitive and Specific Detection of Aphelenchoides besseyi
    Zhang, Anpeng
    Sun, Bin
    Zhang, Jianming
    Cheng, Can
    Zhou, Jihua
    Niu, Fuan
    Luo, Zhongyong
    Yu, Luzhen
    Yu, Cui
    Dai, Yuting
    Xie, Kaizhen
    Hu, Qiyan
    Qiu, Yue
    Cao, Liming
    Chu, Huangwei
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [22] Enzymatic recombinase amplification coupled with CRISPR-Cas12a for ultrasensitive, rapid, and specific Porcine circovirus 3 detection
    Zhang, Wuyin
    Xu, Liang
    Liu, Qi
    Cao, Yingli
    Yang, Kankan
    Song, Xiangjun
    Shao, Ying
    Tu, Jian
    Qi, Kezong
    MOLECULAR AND CELLULAR PROBES, 2021, 59
  • [23] CRISPR/Cas12a Coupled With Recombinase Polymerase Amplification for Sensitive and Specific Detection of Aphelenchoides besseyi
    Zhang, Anpeng
    Sun, Bin
    Zhang, Jianming
    Cheng, Can
    Zhou, Jihua
    Niu, Fuan
    Luo, Zhongyong
    Yu, Luzhen
    Yu, Cui
    Dai, Yuting
    Xie, Kaizhen
    Hu, Qiyan
    Qiu, Yue
    Cao, Liming
    Chu, Huangwei
    Frontiers in Bioengineering and Biotechnology, 2022, 10
  • [24] Reverse Transcription Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a for Facile and Highly Sensitive Colorimetric SARS-CoV-2 Detection
    Zhang, Wei S.
    Pan, Jianbin
    Li, Feng
    Zhu, Min
    Xu, Mengting
    Zhu, Hongyan
    Yu, Yanyan
    Su, Gaoxing
    ANALYTICAL CHEMISTRY, 2021, 93 (08) : 4126 - 4133
  • [25] CRISPR-Cas12a combined with reverse transcription recombinase polymerase amplification for sensitive and specific detection of human norovirus genotype GII.4
    Qian, Weidong
    Huang, Jie
    Wang, Xuefei
    Wang, Ting
    Li, Yongdong
    VIROLOGY, 2021, 564 : 26 - 32
  • [26] An enzymatic recombinase amplification assay combined with CRISPR-Cas12a for the rapid detection of acute hepatopancreatic necrosis disease in shrimp Penaeus vannamei
    Liu, Kexin
    Zhang, Lu
    Yang, Jing
    Zeng, Qifan
    Hu, Jingjie
    Bao, Zhenmin
    Wang, Mengqiang
    AQUACULTURE INTERNATIONAL, 2024, 32 (06) : 7695 - 7718
  • [27] Development of a rapid detection method for Karenia mikimotoi by using CRISPR-Cas12a
    Wang, Lu
    Chen, Xiaoyao
    Pan, Feifei
    Yao, Guangshan
    Chen, Jianming
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [28] Rapid and Sensitive Detection of Toxigenic Fusarium asiaticum Integrating Recombinase Polymerase Amplification, CRISPR/Cas12a, and Lateral Flow Techniques
    Zhang, Jun
    Liang, Xiaoyan
    Zhang, Hao
    Ishfaq, Shumila
    Xi, Kaifei
    Zhou, Xueping
    Yang, Xiuling
    Guo, Wei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [29] Rapid, portable Epstein-Barr virus DNA detection using enzymatic recombinase amplification combined with the CRISPR-Cas12a system
    Li, Jia
    Cheng, Hao
    Wang, Xiaojun
    Chen, Ning
    Chen, Liujie
    Duan, Lili
    Tan, Fenghua
    Li, Kai
    Liao, Duanfang
    Hu, Zheng
    CLINICAL AND TRANSLATIONAL MEDICINE, 2024, 14 (09):
  • [30] CRISPR/Cas12a Technology Combined with Recombinase Polymerase Amplification for Rapid and Portable Monkeypox Virus Detection
    Li, Feifei
    Liu, Sihua
    Luo, Boyu
    Huang, Mengqian
    Teng, Yue
    Wang, Tao
    MICROBIOLOGY SPECTRUM, 2023, 11 (03):