Superharmonic and Microultrasound Imaging With Plane Wave Beamforming Techniques

被引:0
作者
Yang, Jing [1 ,2 ]
Cherin, Emmanuel [1 ]
Yin, Jianhua [1 ]
Dayton, Paul A. [3 ,4 ]
Stuart Foster, F. [1 ,5 ]
Demore, Christine E. M. [1 ,5 ]
机构
[1] Sunnybrook Res Inst, Phys Sci Platform, Toronto, ON M4N 3M5, Canada
[2] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 1L7, Canada
[3] Univ N Carolina, Joint Dept Biomed Engn, Chapel Hill, NC 27599 USA
[4] North Carolina State Univ, Chapel Hill, NC 27599 USA
[5] Univ Toronto, Dept Med Biophys, Toronto, ON M4N 3M5, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
Imaging; Probes; Arrays; Array signal processing; Tumors; Transducers; In vitro; Coherent compounding; dual-frequency (DF) ultrasound; microbubble (MB); plane wave; superharmonic imaging; ultrafast imaging; ultrasound contrast imaging; MOLECULAR ACOUSTIC ANGIOGRAPHY; TUMOR; QUANTIFICATION; VELOCITY; THERAPY; ARRAY;
D O I
10.1109/TUFFC.2023.3316120
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Superharmonic contrast imaging (SpHI) suppresses tissue clutter and allows high-contrast visualization of the vasculature. An array-based dual-frequency (DF) probe has been developed for SpHI, integrating a 21-MHz, 256-element microultrasound imaging array with a 2-MHz, 32-element array to take advantage of the broadband nonlinear responses from microbubble (MB) contrast agents. In this work, ultrafast imaging with plane waves was implemented for SpHI to increase the acquisition frame rate. Ultrafast imaging was also implemented for microultrasound B-mode imaging (HFPW B-mode) to enable high-resolution visualization of the tissue structure. Coherent compounding was demonstrated in vitro and in vivo in both imaging modes. Acquisition frame rates of 4.5 kHz and 187 Hz in HFPW B-mode imaging were achieved for imaging up to 21 mm with one and 25 angles, respectively, and 3.5 kHz and 396 Hz in the SpHI mode with one and nine coherently compounded angles, respectively. SpHI images showed suppression of tissue clutter prior to and after the introduction of MBs in vitro and in vivo. The nine-angle coherently compounded 2-D SpHI images of contrast-filled flow channel showed a contrast-to-tissue ratio (CTR) of 26.0 dB, a 2.5-dB improvement relative to images reconstructed from 0(degrees ) steering. Consistent with in vitro imaging, the nine-angle compounded 2-D SpHI of a Lewis lung cancer tumor showed a 2.6-dB improvement in contrast enhancement, relative to 0(degrees ) steering, and additionally revealed a region of nonviable tissue. The 3-D display of the volumetric SpHI data acquired from a xenograft mouse tumor using both 0(degrees ) steering and nine-angle compounding allowed the visualization of the tumor vasculature. A small vessel visible in the compounded SpHI image, measuring around 300 mu m, is not visualized in the 0(degrees )steering SpHI image, demonstrating the superiority of the latter in detecting fine structures within the tumor.
引用
收藏
页码:1442 / 1456
页数:15
相关论文
共 47 条
[1]   Contrast superharmonic imaging: A feasibility study [J].
Bouakaz, A ;
Krenning, BJ ;
Vletter, WB ;
ten Cate, FJ ;
De Jong, N .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2003, 29 (04) :547-553
[2]   Super harmonic imaging: A new imaging technique for improved contrast detection [J].
Bouakaz, A ;
Frigstad, S ;
Ten Cate, FJ ;
de Jong, N .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2002, 28 (01) :59-68
[3]   IN VITRO SUPERHARMONIC CONTRAST IMAGING USING A HYBRID DUAL-FREQUENCY PROBE [J].
Cherin, Emmanuel ;
Yin, Jianhua ;
Forbrich, Alex ;
White, Christopher ;
Dayton, Paul A. ;
Foster, F. Stuart ;
Demore, Christine E. M. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2019, 45 (09) :2525-2539
[4]   SUPER-RESOLUTION ULTRASOUND IMAGING [J].
Christensen-Jeffries, Kirsten ;
Couture, Olivier ;
Dayton, Paul A. ;
Eldar, Yonina C. ;
Hynynen, Kullervo ;
Kiessling, Fabian ;
O'Reilly, Meaghan ;
Pinton, I. Gianmarco F. ;
Schmitz, Georg ;
Tang, Meng-Xing ;
Tanter, Mickael ;
Van Sloun, Ruud J. G. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (04) :865-891
[5]   Quantitative imaging of coronary flows using 3D ultrafast Doppler coronary angiography [J].
Correia, M. ;
Maresca, D. ;
Goudot, G. ;
Villemain, O. ;
Bize, A. ;
Sambin, L. ;
Tanter, M. ;
Ghaleh, B. ;
Pernot, M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (10)
[6]   Ultrasound Contrast Plane Wave Imaging [J].
Couture, Olivier ;
Fink, Mathias ;
Tanter, Mickael .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (12) :2676-2683
[7]  
Couture O, 2011, IEEE INT ULTRA SYM, P1285, DOI 10.1109/ULTSYM.2011.6293576
[8]   ULTRAFAST IMAGING OF ULTRASOUND CONTRAST AGENTS [J].
Couture, Olivier ;
Bannouf, Souad ;
Montaldo, Gabriel ;
Aubry, Jean-Francois ;
Fink, Mathias ;
Tanter, Mickael .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2009, 35 (11) :1908-1916
[9]   ACOUSTICAL IMAGE-RECONSTRUCTION IN PARALLEL-PROCESSING ANALOG ELECTRONIC SYSTEMS [J].
DELANNOY, B ;
TORGUET, R ;
BRUNEEL, C ;
BRIDOUX, E ;
ROUVAEN, JM ;
LASOTA, H .
JOURNAL OF APPLIED PHYSICS, 1979, 50 (05) :3153-3159
[10]   Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients [J].
Demene, Charlie ;
Robin, Justine ;
Dizeux, Alexandre ;
Heiles, Baptiste ;
Pernot, Mathieu ;
Tanter, Mickael ;
Perren, Fabienne .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (03) :219-228