New insights into hydrogen trapping and embrittlement in high strength aluminum alloys

被引:36
作者
Safyari, Mahdieh [1 ,2 ,3 ]
Khossossi, Nabil [4 ]
Meisel, Thomas [1 ]
Dey, Poulumi [4 ]
Prohaska, Thomas [1 ]
Moshtaghi, Masoud [1 ]
机构
[1] Univ Leoben, Chair Gen & Analyt Chem, Franz Josef Str 18, A-8700 Leoben, Austria
[2] Tohoku Univ, Inst Mat Res, 2-1-1 Katahira,Aoba Ku, Sendai 9808577, Japan
[3] Austrian Inst Technol, LKR Light Met Technol Ranshofen, A-5282 Ranshofen, Austria
[4] Delft Univ Technol, Fac Mech Maritime & Mat Engn, Dept Mat Sci & Engn, Mekelweg 2, NL-2628 CD Delft, Netherlands
基金
日本学术振兴会; 荷兰研究理事会;
关键词
Hydrogen embrittlement; Nanoparticles; Experimental-simulation synergy; Aluminum alloys; In situ and operando characterization; Alloys design; STRESS-CORROSION CRACKING; ENHANCED LOCALIZED PLASTICITY; HEAT-TREATMENT; PRECIPITATION; DEFORMATION; FRACTURE; MECHANISMS; ZIRCONIUM; TRANSPORT; BEHAVIOR;
D O I
10.1016/j.corsci.2023.111453
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An attractive approach to mitigate hydrogen embrittlement (HE) is to use nano-sized particles to immobilize hydrogen. However, the atomic scale relationship between different particle-matrix characteristics in aluminum alloys and the susceptibility to HE is unknown. In this study, the effects of interactions between various interfaces and hydrogen in aluminum alloys are investigated using a comprehensive multiscale experimental and simulation-based approach that includes atomic-scale observations, simulation and advanced hydrogen mapping techniques. Depending on the nature of interfaces, e.g., coherency, size, and crystal structure, some are useful for mitigating HE, others provide hydrogen to sensitive sites, and some act as crack initiation sites.
引用
收藏
页数:13
相关论文
共 56 条
[1]   Inclusion engineering and metallurgy of calcium treatment [J].
Abraham, Sunday ;
Bodnar, Rick ;
Raines, Justin ;
Wang, Yufeng .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2018, 25 (02) :133-145
[2]   EVIDENCE FOR DISLOCATION TRANSPORT OF HYDROGEN IN ALUMINUM [J].
ALBRECHT, J ;
BERNSTEIN, IM ;
THOMPSON, AW .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1982, 13 (05) :811-820
[3]  
Ando M., 2007, Journal of Japan Institute of Light Metals, V57, P19, DOI 10.2464/jilm.57.19
[4]  
Bernstein I.M., 1981, Hydrogen Effects in Metals, P1071
[5]   Combined microtomography, thermal desorption spectroscopy, X-ray diffraction study of hydrogen trapping behavior in 7XXX aluminum alloys [J].
Bhuiyan, Md. Shahnewaz ;
Toda, Hiroyuki ;
Peng, Zhang ;
Hang, Su ;
Horikawa, Keitaro ;
Uesugi, Kentaro ;
Takeuchi, Akihisa ;
Sakaguchi, Nobuto ;
Watanabe, Yoshio .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 655 :221-228
[6]   HYDROGEN-ENHANCED LOCALIZED PLASTICITY - A MECHANISM FOR HYDROGEN-RELATED FRACTURE [J].
BIRNBAUM, HK ;
SOFRONIS, P .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 176 (1-2) :191-202
[7]   Three-dimensional atomic-scale imaging of impurity segregation to line defects [J].
Blavette, D ;
Cadel, E ;
Fraczkiewicz, A ;
Menand, A .
SCIENCE, 1999, 286 (5448) :2317-2319
[8]   Al3(Sc,Zr)-based precipitates in Al-Mg alloy: Effect of severe deformation [J].
Buranova, Yu. ;
Kulitskiy, V. ;
Peterlechner, M. ;
Mogucheva, A. ;
Kaibyshev, R. ;
Divinski, S. V. ;
Wilde, G. .
ACTA MATERIALIA, 2017, 124 :210-224
[9]   Characterization of trapped hydrogen in exfoliation corroded aluminium alloy 2024 [J].
Charitidou, E ;
Papapolymerou, G ;
Haidemenopoulos, GN ;
Hasiotis, N ;
Bontozoglou, V .
SCRIPTA MATERIALIA, 1999, 41 (12) :1327-1332
[10]   THERMAL-ANALYSIS OF TRAPPED HYDROGEN IN PURE IRON [J].
CHOO, WY ;
LEE, JY .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1982, 13 (01) :135-140