The Influence of Internal Climate Variability on Stratospheric Water Vapor Increases After Large-Magnitude Explosive Tropical Volcanic Eruptions

被引:2
作者
Zhou, Xin [1 ,2 ]
Mann, Graham W. [2 ,3 ]
Feng, Wuhu [2 ,3 ]
Dhomse, Sandip S. [2 ,4 ]
Chipperfield, Martyn P. [2 ,4 ]
机构
[1] Chengdu Univ Informat Technol, Sch Atmospher Sci, Plateau Atmosphere & Environm Key Lab Sichuan Prov, Chengdu, Peoples R China
[2] Univ Leeds, Sch Earth & Environm, Leeds, England
[3] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, England
[4] Univ Leeds, Natl Ctr Earth Observat, Leeds, England
基金
中国国家自然科学基金;
关键词
volcanic eruption; stratospheric water vapor; cold-point temperature; aerosol heating; tropical upwelling; ENSO; MT; PINATUBO; NORTHERN-HEMISPHERE; GLOMAP-MODE; IMPACT; AEROSOL; TROPOSPHERE; TRENDS; OZONE; CIRCULATION; AIR;
D O I
10.1029/2023GL103076
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Substantial and prolonged enhancements in stratospheric water vapor (SWV) have occurred after large-magnitude explosive tropical volcanic eruptions, with modified tropopause entry caused by aerosol-absorptive heating. Here, we analyze the timing and longevity of heating-driven post-eruption SWV changes within CMIP6-VolMIP short-term climate-response experiments with the UK Earth System Model (UKESM1). We find aerosol-absorptive heating causes peak SWV increases of 17% (similar to 1 ppmv) and 10% (0.5 ppmv) at 100 and 50 hPa, at similar to 18 and similar to 23 months after a Pinatubo-like eruption, respectively. We track the temperature response in the tropical lower stratosphere and identify the main SWV increase occurs only after the descending aerosol heating reaches the tropopause, suggesting a key role for aerosol microphysical processes (sedimentation rate). We explore how El Nino-Southern Oscillation variability modulates this effect. Post-eruption SWV increases are similar to 80% stronger for the La Nina phase compared to the ensemble mean. Tropical upwelling strongly mediates this effect. Strong volcanic eruptions, such as the 1991 eruption of Mt Pinatubo, inject a large amount of SO2 directly into the stratosphere, thereby enhancing the stratospheric aerosol layer and causing a short-term climatic perturbation. Another substantial part of the climatic influence is the change in stratospheric water vapor (SWV), which affects the chemical processes and the radiative budget of the atmosphere. Along with near-instantaneous injection of water vapor into the stratosphere, volcanic eruptions can indirectly enhance the entry of water vapor into the stratosphere through aerosol-induced tropopause heating. This work analyses Earth system model experiments designed to explore how volcanic impacts combine with internal climate variability. We find that peak SWV entry mixing ratios occur only within the second post-eruption year, consistent with the substantially lagged timing of SWV increase seen in post-Pinatubo satellite measurements. This analysis provides a new perspective on the temporal evolution of the observed post-Pinatubo SWV increase and an improved quantification of its impacts. Aerosol-induced absorptive-heating increases stratospheric water vapor (SWV) by up to 17% at 18 months post-eruption in a Pinatubo-like experimentAnalyzing simulations by El Nino-Southern Oscillation (ENSO) variability show an 80% larger peak SWV increase occurs if an eruption is followed by a La Nina phaseThe timing of peak SWV increase occurs when volcanic-aerosol-induced heating reaches the tropopause, with ENSO modulation of tropical upwelling
引用
收藏
页数:11
相关论文
共 71 条
[1]   Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979-2012 [J].
Abalos, Marta ;
Legras, Bernard ;
Ploeger, Felix ;
Randel, William J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (15) :7534-7554
[2]  
Andrews D., 1987, MIDDLE ATMOSPHERE DY
[3]   The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo at Southern and Northern Midlatitudes [J].
Aquila, V. ;
Oman, L. D. ;
Stolarski, R. ;
Douglass, A. R. ;
Newman, P. A. .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2013, 70 (03) :894-900
[4]   Description and evaluation of the UKCA stratosphere-troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1 [J].
Archibald, Alexander T. ;
O'Connor, Fiona M. ;
Abraham, Nathan Luke ;
Archer-Nicholls, Scott ;
Chipperfield, Martyn P. ;
Dalvi, Mohit ;
Folberth, Gerd A. ;
Dennison, Fraser ;
Dhomse, Sandip S. ;
Griffiths, Paul T. ;
Hardacre, Catherine ;
Hewitt, Alan J. ;
Hill, Richard S. ;
Johnson, Colin E. ;
Keeble, James ;
Kohler, Marcus O. ;
Morgenstern, Olaf ;
Mulcahy, Jane P. ;
Ordonez, Carlos ;
Pope, Richard J. ;
Rumbold, Steven T. ;
Russo, Maria R. ;
Savage, Nicholas H. ;
Sellar, Alistair ;
Stringer, Marc ;
Turnock, Steven T. ;
Wild, Oliver ;
Zeng, Guang .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (03) :1223-1266
[5]   Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model [J].
Bellouin, N. ;
Mann, G. W. ;
Woodhouse, M. T. ;
Johnson, C. ;
Carslaw, K. S. ;
Dalvi, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (06) :3027-3044
[6]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[7]   Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate [J].
Butchart, N ;
Scaife, AA .
NATURE, 2001, 410 (6830) :799-802
[8]   Dynamical Mechanism for the Increase in Tropical Upwelling in the Lowermost Tropical Stratosphere during Warm ENSO Events [J].
Calvo, N. ;
Garcia, R. R. ;
Randel, W. J. ;
Marsh, D. R. .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2010, 67 (07) :2331-2340
[9]   An interactive model study of the influence of the Mount Pinatubo aerosol on stratospheric methane and water trends [J].
Considine, DB ;
Rosenfield, JE ;
Fleming, EL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D21) :27711-27727
[10]   Response of the Quasi-Biennial Oscillation to Historical Volcanic Eruptions [J].
DallaSanta, K. ;
Orbe, C. ;
Rind, D. ;
Nazarenko, L. ;
Jonas, J. .
GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (20)