TiN/Ti/HfO2/TiN memristive devices for neuromorphic computing: from synaptic plasticity to stochastic resonance

被引:7
作者
Maldonado, David [1 ]
Cantudo, Antonio [1 ]
Perez, Eduardo [2 ,3 ]
Romero-Zaliz, Rocio [4 ]
Quesada, Emilio Perez-Bosch [2 ]
Mahadevaiah, Mamathamba Kalishettyhalli [2 ]
Jimenez-Molinos, Francisco [1 ]
Wenger, Christian [2 ,3 ]
Roldan, Juan Bautista [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Elect & Tecnol Comp, Granada, Spain
[2] IHP Leibniz Inst Innovat Mikroelekt, Mat Res Dept, Frankfurt, Germany
[3] Brandenburg Univ Technol Cottbus Senftenberg BTU, Math Comp Sci Phys Elect Engn & Informat Technol D, Cottbus, Germany
[4] Univ Granada, Andalusian Res Inst Data Sci & Computat Intelligen, Ctr Res Informat & Commun Technol CIT, Granada, Spain
关键词
resistive switching devices; neuromorphic computing; synaptic behavior; spike timing dependent plasticity; stochastic resonance; RESISTIVE SWITCHING MEMORY; NEURAL-NETWORK;
D O I
10.3389/fnins.2023.1271956
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We characterize TiN/Ti/HfO2/TiN memristive devices for neuromorphic computing. We analyze different features that allow the devices to mimic biological synapses and present the models to reproduce analytically some of the data measured. In particular, we have measured the spike timing dependent plasticity behavior in our devices and later on we have modeled it. The spike timing dependent plasticity model was implemented as the learning rule of a spiking neural network that was trained to recognize the MNIST dataset. Variability is implemented and its influence on the network recognition accuracy is considered accounting for the number of neurons in the network and the number of training epochs. Finally, stochastic resonance is studied as another synaptic feature. It is shown that this effect is important and greatly depends on the noise statistical characteristics.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Kinetic Monte Carlo analysis of data retention in Al:HfO2-based resistive random access memories [J].
Aldana, S. ;
Perez, E. ;
Jimenez-Molinos, F. ;
Wenger, C. ;
Roldan, J. B. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (11)
[2]   Resistive switching in HfO2 based valence change memories, a comprehensive 3D kinetic Monte Carlo approach [J].
Aldana, S. ;
Garcia-Fernandez, P. ;
Romero-Zaliz, R. ;
Gonzalez, M. B. ;
Jimenez-Molinos, F. ;
Gomez-Campos, F. ;
Campabadal, F. ;
Roldan, J. B. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (22)
[3]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[4]  
Allen J., 1989, Analog VLSI Implementation of Neural Systems, Volume 80
[5]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[6]   THE MECHANISM OF STOCHASTIC RESONANCE [J].
BENZI, R ;
SUTERA, A ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11) :L453-L457
[7]   Stochastic Memory Devices for Security and Computing [J].
Carboni, Roberto ;
Ielmini, Daniele .
ADVANCED ELECTRONIC MATERIALS, 2019, 5 (09)
[8]   Resistive switching memory based on polyvinyl alcohol-graphene oxide hybrid material for the visual perception nervous system [J].
Chen, Zhiliang ;
Zhang, Yating ;
Yu, Yu ;
Li, Yifan ;
Li, Qingyan ;
Li, Tengteng ;
Zhao, Hongliang ;
Li, Zhongyang ;
Bing, Pibin ;
Yao, Jianquan .
MATERIALS & DESIGN, 2022, 223
[9]   Stochastic Resonance Exploration in Current-driven ReRAM Devices [J].
Cirera, Albert ;
Vourkas, Ioannis ;
Rubio, Antonio ;
Perez, Marcelo .
2022 IEEE 22ND INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (NANO), 2022, :543-546
[10]   Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices [J].
Dirkmann, Sven ;
Kaiser, Jan ;
Wenger, Christian ;
Mussenbrock, Thomas .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (17) :14857-14868