MoS2 Nanoflowers Grown on Plasma-Induced W-Anchored Graphene for Efficient and Stable H2 Production Through Seawater Electrolysis

被引:18
作者
Dang, Van Dien [1 ]
Putikam, Raghunath [2 ]
Lin, Ming-Chang [2 ]
Wei, Kung-Hwa [3 ]
机构
[1] Ho Chi Minh City Univ Food Ind, Fac Biol & Environm, 140 Trong Tan, Ho Chi Minh 700000, Vietnam
[2] Natl Yang Ming Chiao Tung Univ, Ctr Interdisciplinary Mol Sci, Dept Appl Chem, Hsinchu 300, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
关键词
3D/2D hybridized structures; graphene nanosheets; hydrogen evolution reaction; MoS2; nanoflower; seawater electrolysis; W-anchored; ACTIVE EDGE SITES; HYDROGEN EVOLUTION; OXIDE; ELECTROCATALYST; EXFOLIATION; PERFORMANCE; GENERATION; MONOLAYER; SUPERIOR; CARBIDE;
D O I
10.1002/smll.202305220
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, it is found that 3D transition metal dichalcogenide (TMD)-MoS2 nanoflowers-grown on 2D tungsten oxide-anchored graphene nanosheets (MoS2@W-G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of MoS2@W-G (MoS2:W-G/1.5:1) in 0.5 M H2SO4 achieves a low overpotential of 78 mV at 10 mA cm(-2), a small Tafel slope of 48 mV dec(-1), and a high exchange current density (0.321 mA cm(-2)). Furthermore, the same MoS2@W-G composite exhibits stable HER performance when using real seawater, with Faradaic efficiencies of 96 and 94% in acidic and alkaline media, respectively. Density functional theory calculations based on the hybrid MoS2@W-Gstructure model confirm that suitable hybridization of 3D MoS2 and 2D W-G nanosheets can lower the hydrogen adsorption: Gibbs free energy (?G(H*)) from 1.89 eV for MoS2 to -0.13 eV for the MoS2@W-G composite. The excellent HER activity of the 3D/2D hybridized MoS2@W-G composite arises from abundance of active heterostructure interfaces, optimizing the electrical configuration, thereby accelerating the adsorption and dissociation of H2O. These findings suggest a new approach for the rational development of alternative 3D/2D TMD/graphene electrocatalysts for HER applications using seawater.
引用
收藏
页数:15
相关论文
共 72 条
[1]   Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium [J].
Bolar, Saikat ;
Shit, Subhasis ;
Kumar, J. Sharath ;
Murmu, Naresh Chandra ;
Ganesh, R. Sankar ;
Inokawa, Hiroshi ;
Kuila, Tapas .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 254 :432-442
[2]   Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams [J].
Chang, Yung-Huang ;
Lin, Cheng-Te ;
Chen, Tzu-Yin ;
Hsu, Chang-Lung ;
Lee, Yi-Hsien ;
Zhang, Wenjing ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
ADVANCED MATERIALS, 2013, 25 (05) :756-760
[3]   XPS investigation of Nafion® membrane degradation [J].
Chen, Cheng ;
Levitin, Galit ;
Hess, Dennis W. ;
Fuller, Thomas F. .
JOURNAL OF POWER SOURCES, 2007, 169 (02) :288-295
[4]   Hydrogen-Assisted Growth of Large-Area Continuous Films of MoS2 on Monolayer Graphene [J].
Chen, Tongxin ;
Zhou, Yingqiu ;
Sheng, Yuewen ;
Wang, Xiaochen ;
Zhou, Si ;
Warner, Jamie H. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) :7304-7314
[5]   Tungsten Carbide-Nitride on Graphene Nanoplatelets as a Durable Hydrogen Evolution Electrocatalyst [J].
Chen, Wei-Fu ;
Schneider, Jonathan M. ;
Sasaki, Kotaro ;
Wang, Chiu-Hui ;
Schneider, Jacob ;
Iyer, Shilpa ;
Iyer, Shweta ;
Zhu, Yimei ;
Muckerman, James T. ;
Fujita, Etsuko .
CHEMSUSCHEM, 2014, 7 (09) :2414-2418
[6]   Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution [J].
Chen, Wenxing ;
Pei, Jiajing ;
He, Chun-Ting ;
Wan, Jiawei ;
Ren, Hanlin ;
Wang, Yu ;
Dong, Juncai ;
Wu, Konglin ;
Cheong, Weng-Chon ;
Mao, Junjie ;
Zheng, Xusheng ;
Yan, Wensheng ;
Zhuang, Zhongbin ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
ADVANCED MATERIALS, 2018, 30 (30)
[7]   Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungstendisulfide/tungsten trioxide ternary nanohybrids [J].
Chen, Yantao ;
Ren, Ren ;
Wen, Zhenhai ;
Ci, Suqin ;
Chang, Jingbo ;
Mao, Shun ;
Chen, Junhong .
NANO ENERGY, 2018, 47 :66-73
[8]   Computational Screening of Efficient Single-Atom Catalysts Based on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Electroreduction [J].
Chen, Zhe ;
Zhao, Jingxiang ;
Cabrera, Carlos R. ;
Chen, Zhongfang .
SMALL METHODS, 2019, 3 (06)
[9]   Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma [J].
Cheng, Chia-Chin ;
Lu, Ang-Yu ;
Tseng, Chien-Chih ;
Yang, Xiulin ;
Hedhili, Mohamed Nejib ;
Chen, Min-Cheng ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
NANO ENERGY, 2016, 30 :846-852
[10]   Tunable Photoluminescence from Graphene Oxide [J].
Chien, Chih-Tao ;
Li, Shao-Sian ;
Lai, Wei-Jung ;
Yeh, Yun-Chieh ;
Chen, Hsin-An ;
Chen, I-Shen ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien ;
Nemoto, Takashi ;
Isoda, Seiji ;
Chen, Mingwei ;
Fujita, Takeshi ;
Eda, Goki ;
Yamaguchi, Hisato ;
Chhowalla, Manish ;
Chen, Chun-Wei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (27) :6662-6666