Mitigation of Salt Stress in Reaumuria soongarica Seedlings by Exogenous Ca2+ and NO Compound Treatment

被引:1
|
作者
Liu, Zehua [1 ]
Liu, Hanghang [1 ]
Tan, Binbin [1 ]
Wang, Xidui [1 ]
Chong, Peifang [1 ]
机构
[1] Gansu Agr Univ, Coll Forestry, Lanzhou 730070, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 08期
关键词
salt stress; antioxidant system; carbon compounds metabolism; nitrogen compounds metabolism; CARBOHYDRATE-METABOLISM; NITRIC-OXIDE; OXIDATIVE STRESS; ABIOTIC STRESS; WATER-DEFICIT; PLANT-GROWTH; TOLERANCE; RESPONSES; LEAVES; DEFENSE;
D O I
10.3390/agronomy13082124
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soil salinization is a common abiotic stress that severely limits the growth of Reaumuria soongarica and reduces its application value. To better understand the response of R. soongarica to salt stress and the physiological mechanisms of exogenous Ca2+ and NO compound treatment in alleviating salt stress, the growth parameters, antioxidant system, carbohydrate metabolism and nitrogen compound metabolism were compared on Days 0, 1, 3, 6, 9, 15 and 30. The results showed that salt stress could significantly reduce the plant height, root length, fresh and dry weights of aboveground and underground parts, as well as the relative water content, severely inhibiting the growth of R. soongarica seedlings. After Ca2+ and NO compound treatment, these growth parameters were significantly improved, and the harm caused by stress in R. soongarica was alleviated. Regarding the antioxidant system, the Ca2+ and NO compound treatment could significantly increase the activities of SOD, CAT, APX and GR, as well as the contents of ASA and GSH, which indicated that exogenous Ca2+ and NO could eliminate the accumulated active oxygen by increasing the activities of oxidoreductases and the content of nonenzymatic antioxidant substances, thereby improving the salt tolerance of R. soongarica. Regarding carbon metabolism, after Ca2+ and NO compound treatment, the soluble sugar and sucrose contents, as well as the activities of sucrose phosphate synthase and sucrose synthase, were significantly increased, which indicated that Ca2+ and NO compound treatment could maintain higher soluble sugar and sucrose contents in R. soongarica and reduce osmotic stress caused by salt treatment. Regarding nitrogen metabolism, the Ca2+ and NO compound treatment reduced the harm of salt stress by regulating the nitrogen compound contents and nitrogen compound-related enzyme activities, including increases in the NO3- content and NR, NiR, GS, GOGAT and GDH activities and a reduction in the NO2- content. The results of this study indicate that the inhibition of the growth and development of R. soongarica by salt stress can be alleviated by regulating the antioxidant system, carbohydrate metabolism and nitrogen compound metabolism, which provides a theoretical basis for Ca2+ and NO compound treatment to improve plant salt tolerance.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Foliar application of exogenous salicylic acid mitigates the detrimental effects caused by salt stress in sunflower seedlings
    Liu, Ake
    Wang, Mingyang
    Dong, Jingjing
    Yan, Ziyi
    Wang, Xi
    Li, Juan
    Song, Huifang
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 222
  • [32] Mitigation of Drought Stress Effects on Pepper Seedlings by Exogenous Methylamine Application
    Yildirim, Ertan
    Ekinci, Melek
    Kul, Raziye
    Turan, Metin
    Gur, Ayla
    INTERNATIONAL LETTERS OF NATURAL SCIENCES, 2019, 76 : 111 - 123
  • [33] Effects of exogenous Ca2+ on photosynthetic characteristics and fruit quality of pepper under waterlogging stress
    Ou, Li-Jun
    Liu, Zhou-Bin
    Zhang, Yu-Ping
    Zou, Xue-Xiao
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2017, 77 (02): : 126 - 133
  • [34] Mitigation of salt stress damages in Carica papaya L. seedlings through exogenous pretreatments of gibberellic acid and proline
    Alvarez-Mendez, Sergio J.
    Urbano-Galvez, Antonio
    Mahouachi, Jalel
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2022, 82 (01): : 167 - 176
  • [35] Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings
    Miao, Yanxiu
    Luo, Xiyan
    Gao, Xingxing
    Wang, Wenjiao
    Li, Bin
    Hou, Leiping
    SCIENTIA HORTICULTURAE, 2020, 272
  • [36] EFFECTS OF EXOGENOUS ABSCISIC ACID ON SALT TOLERANCE OF WATERMELON SEEDLINGS UNDER NaCl STRESS
    Feng, X. Y.
    Chen, S. Y.
    Yang, S. M.
    An, X. Q.
    Liu, Y. Y.
    Lu, H. L.
    Yang, C. Q.
    Qin, Y. G.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2022, 20 (05): : 4515 - 4524
  • [37] Effects of Exogenous Isosteviol on the Physiological Characteristics of Brassica napus Seedlings under Salt Stress
    Xia, Wenjing
    Meng, Wangang
    Peng, Yueqin
    Qin, Yutian
    Zhang, Liang
    Zhu, Nianqing
    PLANTS-BASEL, 2024, 13 (02):
  • [38] Effect of Exogenous Chitosan on Physiological Characteristics, Photosynthetic Parameters, and Antioxidant Systems of Maize Seedlings Under Salt Stress
    Shen, Fengmin
    Jiao, Qiujuan
    Zhang, Jingjing
    Fan, Lina
    Yu, Peiyi
    Liu, Deyuan
    Liu, Fang
    Zhao, Ying
    Fahad, Shah
    Liu, Haitao
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2024, 24 (04) : 7024 - 7041
  • [39] Exogenous Ca2+ Associated with Melatonin Alleviates Drought-Induced Damage in the Woody Tree Dalbergia odorifera
    Cisse, El-Hadji Malick
    Zhang, Li-Jia
    Pu, Yu-Jin
    Miao, Ling-Feng
    Li, Da-Dong
    Zhang, Juan
    Yang, Fan
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (06) : 2359 - 2374
  • [40] Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats
    Ramadoss, Dhanushkodi
    Lakkineni, Vithal K.
    Bose, Pranita
    Ali, Sajad
    Annapurna, Kannepalli
    SPRINGERPLUS, 2013, 2 : 1 - 7