Automatic deep learning-based pipeline for automatic delineation and measurement of fetal brain structures in routine mid-trimester ultrasound images

被引:3
作者
Coronado-Gutierrez, David [1 ,2 ]
Eixarch, Elisenda [1 ,4 ,5 ]
Monterde, Elena [1 ]
Matas, Isabel [1 ]
Traversi, Paola [1 ]
Gratacos, Eduard [1 ,4 ,5 ]
Bonet-Carne, Elisenda [1 ,3 ,6 ,7 ]
Burgos-Artizzu, Xavier P. [1 ]
机构
[1] Univ Barcelona, Hosp Clin & Hosp St Joan Deu, BCNatal Fetal Med Res Ctr, Barcelona, Spain
[2] Transmural Biotech SL, Barcelona, Spain
[3] Inst Invest Biomed August Pi i Sunyer IDIBAPS, Barcelona, Spain
[4] Inst Invest Biomed August Pi i Sunyer IDIBAPS, Barcelona, Spain
[5] Ctr Biomed Res Rare Dis CIBERER, Barcelona, Spain
[6] Univ Politecn Cataluna, Barcelona Tech, Barcelona, Spain
[7] Univ Barcelona, Hosp St Joan Deu & Hosp Clin, Barcelona Ctr Maternal Fetal & Neonatal Med, BCNatal Fetal Med Res Ctr, Sabino Arana 1, Barcelona 08028, Spain
关键词
SONOGRAPHIC EXAMINATION; SEGMENTATION; GUIDELINES;
D O I
10.1159/000533203
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Introduction: The aim of this study was to develop a pipeline using state-of-the-art deep learning methods to automatically delineate and measure several of the most important brain structures in fetal brain ultrasound images.Methods: The dataset was composed of 5,331 images of fetal brain acquired during the routine mid-trimester ultrasound scan. Our proposed pipeline automatically performs the following three steps: brain plane classification (transventricular, transthalamic or transcerebellar plane); brain structures delineation (9 different structures); and automatic measurement (from the structure delineations). The methods were trained on a subset of 4,331 images and each step was evaluated on the remaining 1,000 images.Results: Plane classification reached 98.6% average class accuracy. Brain structure delineation obtained an average pixel accuracy higher than 96% and a Jaccard index higher than 70%. Automatic measurements get an absolute error below 3.5% for the four standard head biometries (head circumference, biparietal diameter, occipitofrontal diameter and cephalic index), 9% for transcerebellar diameter, 12% for cavum septi pellucidi ratio and 26% for Sylvian fissure operculization degree.Conclusions: The proposed pipeline shows the potential of deep learning methods to delineate fetal head and brain structures and obtain automatic measures of each anatomical standard plane acquired during routine fetal ultrasound examination.
引用
收藏
页码:480 / 490
页数:11
相关论文
共 30 条
  • [1] [Anonymous], FETAL PLANES DB COMM
  • [2] Fetal and perinatal outcome associated with small cerebellar diameter based on second- or third-trimester ultrasonography
    Atallah, Anthony
    Guibaud, Laurent
    Gaucherand, Pascal
    Massardier, Jerome
    des Portes, Vincent
    Massoud, Mona
    [J]. PRENATAL DIAGNOSIS, 2019, 39 (07) : 536 - 543
  • [3] Analysis of maturation features in fetal brain ultrasound via artificial intelligence for the estimation of gestational age
    Burgos-Artizzu, Xavier P.
    Coronado-Gutierrez, David
    Valenzuela-Alcaraz, Brenda
    Vellve, Kilian
    Eixarch, Elisenda
    Crispi, Fatima
    Bonet-Carne, Elisenda
    Bennasar, Mar
    Gratacos, Eduard
    [J]. AMERICAN JOURNAL OF OBSTETRICS & GYNECOLOGY MFM, 2021, 3 (06)
  • [4] Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
    Burgos-Artizzu, Xavier P.
    Coronado-Gutierrez, David
    Valenzuela-Alcaraz, Brenda
    Bonet-Carne, Elisenda
    Eixarch, Elisenda
    Crispi, Fatima
    Gratacos, Eduard
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree
    Carneiro, Gustavo
    Georaescu, Bogdan
    Good, Sara
    Comaniciu, Dorin
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (09) : 1342 - 1355
  • [6] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [7] Ultrasonographic Characteristics of Cortical Sulcus Development in the Human Fetus between 18 and 41 Weeks of Gestation
    Chen, Xi
    Li, Sheng-Li
    Luo, Guo-Yang
    Norwitz, Errol R.
    Ouyang, Shu-Yuan
    Wen, Hua-Xuan
    Yuan, Ying
    Tian, Xiao-Xian
    He, Jia-Min
    [J]. CHINESE MEDICAL JOURNAL, 2017, 130 (08) : 920 - 928
  • [8] Automatic Measurements of Fetal Lateral Ventricles in 2D Ultrasound Images Using Deep Learning
    Chen, Xijie
    He, Miao
    Dan, Tingting
    Wang, Nan
    Lin, Meifang
    Zhang, Lihe
    Xian, Jianbo
    Cai, Hongmin
    Xie, Hongning
    [J]. FRONTIERS IN NEUROLOGY, 2020, 11
  • [9] ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth
    Salomon L.J.
    Alfirevic Z.
    Da Silva Costa F.
    Deter R.L.
    Figueras F.
    Ghi T.
    Glanc P.
    Khalil A.
    Lee W.
    Napolitano R.
    Papageorghiou A.
    Sotiradis A.
    Stirnemann J.
    Toi A.
    Yeo G.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2019, 53 (06) : 715 - 723
  • [10] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1