POINCARE INEQUALITIES ON GRAPHS

被引:0
作者
Levi, M. [1 ]
Santagati, F. [2 ]
Tabacco, A. [2 ]
Vallarino, M. [2 ]
机构
[1] Univ Genoa, DIBRIS, MaLGa Ctr, Genoa, Italy
[2] Politecn Torino, Dipartimento Eccellenza 20182022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Poincare inequality; graph; tree; nondoubling measure; PARABOLIC HARNACK INEQUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every graph of bounded degree endowed with the counting measure satisfies a local version of L-p-Poincare inequality, p is an element of [1, infinity]. We show that on graphs which are trees the Poincare constant grows at least exponentially with the radius of balls. On the other hand, we prove that, surprisingly, trees endowed with a flow measure support a global version of L-p-Poincare inequality, despite the fact that they are nondoubling measures of exponential growth.
引用
收藏
页码:529 / 544
页数:16
相关论文
共 16 条
[1]   Local and non-local Poincare inequalities on Lie groups [J].
Bruno, Tommaso ;
Peloso, Marco M. ;
Vallarino, Maria .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (06) :2162-2173
[2]  
COULHON T, 1993, REV MAT IBEROAM, V9, P293
[3]  
Coulhon T., 2004, Milan J. Math., V72, P209
[4]  
Delmotte T, 1999, REV MAT IBEROAM, V15, P181
[5]  
Delmotte T., 1997, Colloq. Math., V72, P19
[6]   Sharp geometric Poincare inequalities for vector fields and non-doubling measures [J].
Franchi, B ;
Pérez, C ;
Wheeden, RL .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 80 :665-689
[7]  
Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX
[8]   Multipliers and singular integrals on exponential growth groups [J].
Hebisch, W ;
Steger, T .
MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (01) :37-61
[9]   Quasiconformal maps in metric spaces with controlled geometry [J].
Heinonen, J ;
Koskela, P .
ACTA MATHEMATICA, 1998, 181 (01) :1-61
[10]  
Heinonen J., 2015, New Mathematical Monographs