Compensated Attention Feature Fusion and Hierarchical Multiplication Decoder Network for RGB-D Salient Object Detection

被引:4
作者
Zeng, Zhihong [1 ]
Liu, Haijun [1 ]
Chen, Fenglei [1 ]
Tan, Xiaoheng [1 ]
机构
[1] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
hierarchical multiplication decoder; multi-modal feature fusion; RGB-D saliency detection; DOMAIN ADAPTATION; IMAGE;
D O I
10.3390/rs15092393
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Multi-modal feature fusion and effectively exploiting high-level semantic information are critical in salient object detection (SOD). However, the depth maps complementing RGB image fusion strategies cannot supply effective semantic information when the object is not salient in the depth maps. Furthermore, most existing (UNet-based) methods cannot fully exploit high-level abstract features to guide low-level features in a coarse-to-fine fashion. In this paper, we propose a compensated attention feature fusion and hierarchical multiplication decoder network (CAF-HMNet) for RGB-D SOD. Specifically, we first propose a compensated attention feature fusion module to fuse multi-modal features based on the complementarity between depth and RGB features. Then, we propose a hierarchical multiplication decoder to refine the multi-level features from top down. Additionally, a contour-aware module is applied to enhance object contour. Experimental results show that our model achieves satisfactory performance on five challenging SOD datasets, including NJU2K, NLPR, STERE, DES, and SIP, which verifies the effectiveness of the proposed CAF-HMNet.
引用
收藏
页数:20
相关论文
共 71 条
  • [41] Niu YZ, 2012, PROC CVPR IEEE, P454, DOI 10.1109/CVPR.2012.6247708
  • [42] Paszke A, 2019, ADV NEUR IN, V32
  • [43] RGBD Salient Object Detection: A Benchmark and Algorithms
    Peng, Houwen
    Li, Bing
    Xiong, Weihua
    Hu, Weiming
    Ji, Rongrong
    [J]. COMPUTER VISION - ECCV 2014, PT III, 2014, 8691 : 92 - 109
  • [44] Perazzi F, 2012, PROC CVPR IEEE, P733, DOI 10.1109/CVPR.2012.6247743
  • [45] Piao Y, 2020, PROC CVPR IEEE, P9057, DOI 10.1109/CVPR42600.2020.00908
  • [46] Depth-induced Multi-scale Recurrent Attention Network for Saliency Detection
    Piao, Yongri
    Ji, Wei
    Li, Jingjing
    Zhang, Miao
    Lu, Huchuan
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7253 - 7262
  • [47] BASNet: Boundary-Aware Salient Object Detection
    Qin, Xuebin
    Zhang, Zichen
    Huang, Chenyang
    Gao, Chao
    Dehghan, Masood
    Jagersand, Martin
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7471 - 7481
  • [48] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [49] Stan S, 2021, Arxiv, DOI arXiv:2101.00522
  • [50] Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion
    Sun, Peng
    Zhang, Wenhu
    Wang, Huanyu
    Li, Songyuan
    Li, Xi
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1407 - 1417