Compensated Attention Feature Fusion and Hierarchical Multiplication Decoder Network for RGB-D Salient Object Detection

被引:4
作者
Zeng, Zhihong [1 ]
Liu, Haijun [1 ]
Chen, Fenglei [1 ]
Tan, Xiaoheng [1 ]
机构
[1] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
hierarchical multiplication decoder; multi-modal feature fusion; RGB-D saliency detection; DOMAIN ADAPTATION; IMAGE;
D O I
10.3390/rs15092393
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Multi-modal feature fusion and effectively exploiting high-level semantic information are critical in salient object detection (SOD). However, the depth maps complementing RGB image fusion strategies cannot supply effective semantic information when the object is not salient in the depth maps. Furthermore, most existing (UNet-based) methods cannot fully exploit high-level abstract features to guide low-level features in a coarse-to-fine fashion. In this paper, we propose a compensated attention feature fusion and hierarchical multiplication decoder network (CAF-HMNet) for RGB-D SOD. Specifically, we first propose a compensated attention feature fusion module to fuse multi-modal features based on the complementarity between depth and RGB features. Then, we propose a hierarchical multiplication decoder to refine the multi-level features from top down. Additionally, a contour-aware module is applied to enhance object contour. Experimental results show that our model achieves satisfactory performance on five challenging SOD datasets, including NJU2K, NLPR, STERE, DES, and SIP, which verifies the effectiveness of the proposed CAF-HMNet.
引用
收藏
页数:20
相关论文
共 71 条
  • [1] Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
  • [2] Source-free domain adaptation for image segmentation
    Bateson, Mathilde
    Kervadec, Hoel
    Dolz, Jose
    Lombaert, Herve
    Ben Ayed, Ismail
    [J]. MEDICAL IMAGE ANALYSIS, 2022, 82
  • [3] Salient Object Detection: A Benchmark
    Borji, Ali
    Cheng, Ming-Ming
    Jiang, Huaizu
    Li, Jia
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5706 - 5722
  • [4] Salient object detection: A survey
    Borji, Ali
    Cheng, Ming-Ming
    Hou, Qibin
    Jiang, Huaizu
    Li, Jia
    [J]. COMPUTATIONAL VISUAL MEDIA, 2019, 5 (02) : 117 - 150
  • [5] Depth-Quality-Aware Salient Object Detection
    Chen, Chenglizhao
    Wei, Jipeng
    Peng, Chong
    Qin, Hong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2350 - 2363
  • [6] BES-Net: Boundary Enhancing Semantic Context Network for High-Resolution Image Semantic Segmentation
    Chen, Fenglei
    Liu, Haijun
    Zeng, Zhihong
    Zhou, Xichuan
    Tan, Xiaoheng
    [J]. REMOTE SENSING, 2022, 14 (07)
  • [7] Three-Stream Attention-Aware Network for RGB-D Salient Object Detection
    Chen, Hao
    Li, Youfu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) : 2825 - 2835
  • [8] RGBD Salient Object Detection via Disentangled Cross-Modal Fusion
    Chen, Hao
    Deng, Yongjian
    Li, Youfu
    Hung, Tzu-Yi
    Lin, Guosheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 8407 - 8416
  • [9] Progressively Complementarity-aware Fusion Network for RGB-D Salient Object Detection
    Chen, Hao
    Li, Youfu
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3051 - 3060
  • [10] SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning
    Chen, Long
    Zhang, Hanwang
    Xiao, Jun
    Nie, Liqiang
    Shao, Jian
    Liu, Wei
    Chua, Tat-Seng
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6298 - 6306