LARGE SUBSETS OF EUCLIDEAN SPACE AVOIDING INFINITE ARITHMETIC PROGRESSIONS

被引:5
作者
Bradford, Laurestine [1 ,2 ]
Kohut, Hannah [3 ]
Mooroogen, Yuveshen [3 ]
机构
[1] McGill Univ, Dept Linguist, Montreal, PQ H3A 1A7, Canada
[2] Ctr Res Brain Language & Mus, Montreal, PQ H3G 2A8, Canada
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SETS;
D O I
10.1090/proc/16404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that if a subset of R has positive Lebesgue measure, then it contains arbitrarily long finite arithmetic progressions. We prove that this result does not extend to infinite arithmetic progressions in the following sense: for each lambda in [0, 1), we construct a subset of R that intersects every interval of unit length in a set of measure at least lambda, but that does not contain any infinite arithmetic progression.
引用
收藏
页码:3535 / 3545
页数:11
相关论文
共 16 条
[2]  
Burgin Alex, 2022, PREPRINT
[3]  
Chlebik Miroslav, 2015, PREPRINT
[4]  
Denson J., 2021, Springer Optim. Appl., V168, P59, DOI [10.1007/978-3-030-61887-2_4, DOI 10.1007/978-3-030-61887-2_4]
[5]   LARGE SETS AVOIDING PATTERNS [J].
Fraser, Robert ;
Pramanik, Malabika .
ANALYSIS & PDE, 2018, 11 (05) :1083-1111
[6]   CONSTRUCTION OF ONE-DIMENSIONAL SUBSETS OF THE REALS NOT CONTAINING SIMILAR COPIES OF GIVEN PATTERNS [J].
Keleti, Tamas .
ANALYSIS & PDE, 2008, 1 (01) :29-33
[7]  
Kolountzakis Mihail N., 2022, PREPRINT
[8]  
Kuhl J., 2022, Personal communication
[9]  
Maga P, 2010, REAL ANAL EXCH, V36, P79
[10]   Sets of large dimension not containing polynomial configurations [J].
Mathe, Andras .
ADVANCES IN MATHEMATICS, 2017, 316 :691-709