Material extrusion-based additive manufacturing of zirconia toughened alumina: Machinability, mechanical properties and biocompatibility

被引:19
|
作者
Yu, Tianyu [1 ,2 ]
Zhu, Xiaolong [3 ]
Yu, Hongwei [2 ]
Wu, Pan [2 ]
Li, Chun [4 ]
Han, Xiaoxiao [3 ]
Chen, Mingjun [1 ,2 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Mechatron Engn, Harbin 150001, Peoples R China
[3] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China
[4] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Zirconia-toughened alumina; Additive manufacturing; Direct ink writing; Ceramics; Biocompatibility; CERAMICS; ZTA; COMPOSITE; RESISTANCE; SIZE;
D O I
10.1016/j.jmapro.2023.03.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Material extrusion-based additive manufacturing (MEAM) has gained significant attention due to its versatile flexibility for fabricating a broad range of materials. In this study, fabrication of dense zirconia-toughened alumina (ZTA) ceramics with micro/nano powders of excellent mechanical and biological properties was investigated. The ZTA paste rheology was engineered to achieve appropriate rheological behavior. A novel machining scheme on MEAM produced ZTA green parts using CNC milling and high precision micro-milling was studied to investigate their effect on surface integrity and geometric accuracy. The MEAM produced ZTA ce-ramics show the highest relative density, Vickers hardness, bending strength, and fracture toughness of 99 %, 17.7 GPa, 422.5 MPa, and 6.2 MPa*m1/2, respectively. Biocompatibility of fabricated ZTA ceramics with different size of powders was investigated including cell adhesion, cell toxicity and cell proliferation, showing a good potential in biomedical usage. This framework provides a unique pathway for MEAM of ZTA ceramics to combine design and manufacturing freedom, multifunctionality, stability, and economical simultaneously.
引用
收藏
页码:120 / 132
页数:13
相关论文
共 50 条
  • [1] Additive Manufacturing of Fiber-Reinforced Zirconia-Toughened Alumina Ceramic Matrix Composites by Material Extrusion-Based Technology
    Hadian, Amir
    Duckek, Jannis
    Parrilli, Annapaola
    Liersch, Antje
    Clemens, Frank
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (18)
  • [2] Compositionally graded structures of zirconia toughened alumina using extrusion-based 3D printing
    Li, Yetao
    Ma, Xiang
    Sun, Xun
    Wang, Xianwen
    Li, Zhihui
    Lu, Liangliang
    Yu, Qingxiao
    Huang, Xiaolu
    Li, Fei
    Zhang, Yaozhong
    ADDITIVE MANUFACTURING, 2024, 88
  • [3] Extrusion-based additive manufacturing of yttria-partially-stabilized zirconia ceramics
    Yu, Tianyu
    Zhang, Ziyang
    Liu, Qingyang
    Kuliiev, Ruslan
    Orlovskaya, Nina
    Wu, Dazhong
    CERAMICS INTERNATIONAL, 2020, 46 (04) : 5020 - 5027
  • [4] Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing
    Reich, Matthew J.
    Woern, Aubrey L.
    Tanikella, Nagendra G.
    Pearce, Joshua M.
    MATERIALS, 2019, 12 (10)
  • [5] Mechanical Recyclability of Polypropylene Composites Produced by Material Extrusion-Based Additive Manufacturing
    Spoerk, Martin
    Arbeiter, Florian
    Raguz, Ivan
    Holzer, Clemens
    Gonzalez-Gutierrez, Joamin
    POLYMERS, 2019, 11 (08)
  • [6] Extrusion-based additive manufacturing of alumina ceramics through controlled extrusion pressure
    Chandan, Palivela Bhargav
    Ravi, Sankar Mamilla
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2025, 22 (02)
  • [7] Extrusion-based additive manufacturing of functionally graded ceramics
    Li, Wenbin
    Armani, Amir
    Martin, Austin
    Kroehler, Benjamin
    Henderson, Alexander
    Huang, Tieshu
    Watts, Jeremy
    Hilmas, Gregory
    Leu, Ming
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (03) : 2049 - 2057
  • [8] Mechanical properties of polymeric implant materials produced by extrusion-based additive manufacturing
    Petersmann, Sandra
    Spoerk, Martin
    Van De Steene, Willem
    Ucal, Muammer
    Wiener, Johannes
    Pinter, Gerald
    Arbeiter, Florian
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 104
  • [9] Selected design rules for material extrusion-based additive manufacturing of alumina based nozzles and heat exchangers considering limitations in printing, debinding, and sintering
    Hadian, Amir
    Morath, Benjamin
    Biedermann, Manuel
    Meboldt, Mirko
    Clemens, Frank
    ADDITIVE MANUFACTURING, 2023, 75
  • [10] Material Extrusion-Based Additive Manufacturing with Blends of Polypropylene and Hydrocarbon Resins
    Das, Arit
    Marnot, Alexandra E. C.
    Fallon, Jacob J.
    Martin, Stephen M.
    Joseph, Eugene G.
    Bortner, Michael J.
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (02): : 911 - 921