Planar Orthogonal Polynomials as Type I Multiple Orthogonal Polynomials

被引:7
作者
Berezin, Sergey [1 ,2 ]
Kuijlaars, Arno B. J. [1 ]
Parra, Ivan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B box 2400, B-3001 Leuven, Belgium
[2] RAS, VA Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
关键词
planar orthogonal polynomials; multiple orthogonal polynomials; Riemann-Hilbert problems; Hermite-Pade approximation; normal matrix model; RIEMANN-HILBERT PROBLEMS; ASYMPTOTICS; UNIVERSALITY; RESPECT;
D O I
10.3842/SIGMA.2023.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent result of S.-Y. Lee and M. Yang states that the planar orthogonal polynomials orthogonal with respect to a modified Gaussian measure are multiple orthogonal polynomials of type II on a contour in the complex plane. We show that the same polynomials are also type I orthogonal polynomials on a contour, provided the exponents in the weight are integer. From this orthogonality, we derive several equivalent Riemann-Hilbert problems. The proof is based on the fundamental identity of Lee and Yang, which we establish using a new technique.
引用
收藏
页数:18
相关论文
共 23 条
[1]   Characteristic polynomials of complex random matrix models [J].
Akemann, G ;
Vernizzi, G .
NUCLEAR PHYSICS B, 2003, 660 (03) :532-556
[2]   Gegenbauer and Other Planar Orthogonal Polynomials on an Ellipse in the Complex Plane [J].
Akemann, Gernot ;
Nagao, Taro ;
Parra, Ivan ;
Vernizzi, Graziano .
CONSTRUCTIVE APPROXIMATION, 2021, 53 (03) :441-478
[3]   Orthogonal Polynomials for a Class of Measures with Discrete Rotational Symmetries in the Complex Plane [J].
Balogh, F. ;
Grava, T. ;
Merzi, D. .
CONSTRUCTIVE APPROXIMATION, 2017, 46 (01) :109-169
[4]   Strong Asymptotics of the Orthogonal Polynomials with Respect to a Measure Supported on the Plane [J].
Balogh, Ferenc ;
Bertola, Marco ;
Lee, Seung-Yeop ;
McLaughlin, Kenneth D. T-R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (01) :112-172
[5]   Painleve IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane [J].
Bertola, Marco ;
Elias Rebelo, Jose Gustavo ;
Grava, Tamara .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[6]   Orthogonal polynomials in the normal matrix model with a cubic potential [J].
Bleher, Pavel M. ;
Kuijlaars, Arno B. J. .
ADVANCES IN MATHEMATICS, 2012, 230 (03) :1272-1321
[7]  
Byun SS, 2022, Arxiv, DOI arXiv:2211.16223
[8]   Characteristic Polynomials of Complex Random Matrices and Painleve Transcendents [J].
Deano, Alfredo ;
Simm, Nick .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (01) :210-264
[9]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1335, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO
[10]  
2-1