Joint Maneuver and Beamforming Design for UAV-Enabled Integrated Sensing and Communication

被引:127
作者
Lyu, Zhonghao [1 ,2 ]
Zhu, Guangxu [3 ]
Xu, Jie [1 ,2 ]
机构
[1] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn SSE, Shenzhen 518172, Peoples R China
[2] Chinese Univ Hong Kong Shenzhen, Future Network Intelligence Inst FNii, Shenzhen 518172, Peoples R China
[3] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated sensing and communication (ISAC); unmanned aerial vehicle (UAV); maneuver control; uniform linear array (ULA); transmit beamforming; optimization; MIMO RADAR; RESOURCE-ALLOCATION; OPTIMIZATION; COEXISTENCE; SYSTEMS;
D O I
10.1109/TWC.2022.3211533
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the unmanned aerial vehicle (UAV)-enabled integrated sensing and communication (ISAC), in which UAVs are dispatched as aerial dual-functional access points (APs) that can exploit the UAV maneuver control and strong line-of-sight (LoS) air-to-ground (A2G) links for efficient communication and sensing. In particular, we consider that one UAV-AP, equipped with a vertically placed uniform linear array (ULA), sends combined information and sensing signals to communicate with multiple users and at the same time sense potential targets at interested areas on the ground. Under this setup, we consider two scenarios with quasi-stationary and fully mobile UAVs, in which the UAV is deployed at an optimizable location over the whole ISAC mission period and can fly over different locations during the ISAC mission period, respectively. For the two scenarios, our objective is to jointly design the UAV maneuver (deployment location or flight trajectory) and the transmit beamforming, for maximizing the weighted sum-rate throughput of communication users, while ensuring the sensing beampattern gain requirements, subject to the transmit power and flight constraints. However, due to the ULA consideration at the UAV, the two formulated problems are highly non-convex and very difficult to be optimally solved, as the UAV's location/trajectory variables are involved on the exponent parts of each entry in the steering vectors, and are closely coupled with the transmit beamforming vectors. To tackle this issue, we propose efficient algorithms to find their suboptimal but high-quality solutions, by using various techniques from convex and non-convex optimization. Finally, numerical results are provided to validate the superiority of our proposed designs as compared to various benchmark schemes with heuristic maneuver designs. It is shown that the joint maneuver and transmit beamforming design efficiently balances the inherent tradeoff between sensing and communication with regards to different beampattern gain thresholds.
引用
收藏
页码:2424 / 2440
页数:17
相关论文
共 55 条
[1]  
about.att, COWS FLY AT T SEND L
[2]   Radio Channel Modeling for UAV Communication Over Cellular Networks [J].
Amorim, Rafhael ;
Huan Nguyen ;
Mogensen, Preben ;
Kovacs, Istvan Z. ;
Wigard, Jeroen ;
Sorensen, Troels B. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2017, 6 (04) :514-517
[3]  
[Anonymous], 2020, A Research Outlook Towards 6G
[4]   Experimentally Analyzing Diverse Antenna Placements and Orientations for UAV Communications [J].
Badi, Mahmoud ;
Wensowitch, John ;
Rajan, Dinesh ;
Camp, Joseph .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) :14989-15004
[5]  
Bondy J. A., 1976, Graph theory with applications
[6]   Efficient Local Map Search Algorithms for the Placement of Flying Relays [J].
Chen, Junting ;
Gesbert, David .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (02) :1305-1319
[7]  
Conn Andrew R, 2000, MOS-SIAM Series on Optimization, DOI DOI 10.1137/1.9780898719857
[8]  
Cordeiro C., 2020, Next-Generation Wi-Fi: Wi-Fi 7 and Beyond
[9]   Analytical Channel Models for Millimeter Wave UAV Networks Under Hovering Fluctuations [J].
Dabiri, Mohammad Taghi ;
Safi, Hossein ;
Parsaeefard, Saeedeh ;
Saad, Walid .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (04) :2868-2883
[10]  
Dinh Q. T., 2010, RECENT ADV OPTIMIZAT, P93