Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature applications

被引:204
作者
Wang, Mingliang [1 ]
Lu, Yiping [1 ]
Lan, Jinggang [2 ]
Wang, Tongmin [1 ]
Zhang, Chuan [3 ]
Cao, Zhiqiang [1 ]
Li, Tingju [1 ]
Liaw, Peter K. [4 ]
机构
[1] Dalian Univ Technol, Sch Mat Sci & Engn, Key Lab Solidificat Control & Digital Preparat Tec, Dalian 116024, Peoples R China
[2] Univ Zurich, Dept Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] CompuTherm LLC, Middleton, WI 53562 USA
[4] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
基金
中国国家自然科学基金; 中国博士后科学基金; 美国国家科学基金会;
关键词
Eutectic high-entropy alloy; High -temperature strength; Low density; Thermal stability; Nanoprecipitates; MECHANICAL-PROPERTIES; MICROSTRUCTURE; DESIGN; CREEP; STABILITY; DUCTILITY; DENSITY; EVOLUTION; STRATEGY; STRENGTH;
D O I
10.1016/j.actamat.2023.118806
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Eutectic high-entropy alloys (EHEAs) that combine the advantages of HEAs and eutectic alloys are promising candidates for high-temperature applications. However, currently developed EHEAs still exhibit high densities and low high-temperature strengths, which limit their usage. Here we propose a strategy to design lightweight, strong, and high thermal-stable EHEAs by introducing an extremely stable Heusler-type ordered phase (L21 phase) containing a high-content of low-density elements and constructing a low lattice misfit eutectic-phase interface, which can lead to generate ultrafine and stable lamellar structures and high-density of coherent nanoprecipitates. As a manifestation of this strategy, a novel bulk Al17Ni34Ti17V32 EHEA was designed to consist of L21 and body-centered-cubic (BCC) phases (interlamellar spacing -320 nm) with a lattice misfit only 2.4%. This alloy has one of the lowest densities (-6.2 g/cm3) among all EHEAs reported previously and exhibits much higher high-temperature hardness and specific yield strengths than most reported refractory HEAs (RHEAs), lightweight HEAs (LWHEAs), EHEAs, and conventional superalloys. This work paves the way to develop light EHEAs with excellent high-temperature properties.
引用
收藏
页数:12
相关论文
共 79 条
[1]   Recrystallization of a novel two-phase FeNiMnAlCr high entropy alloy [J].
Baker, Ian ;
Meng, Fanling ;
Wu, Margaret ;
Brandenberg, Andre .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 656 :458-464
[2]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[3]  
Caillard D., 2003, Thermally Activated Mechanisms in Crystal Plasticity
[4]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[5]   The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys [J].
Chang, Yao-Jen ;
Yeh, An-Chou .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 653 :379-385
[6]   LAMINAR CERAMIC COMPOSITES [J].
CHARTIER, T ;
MERLE, D ;
BESSON, JL .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1995, 15 (02) :101-107
[7]  
COPLEY SM, 1967, T METALL SOC AIME, V239, P977
[8]   A low-cost hierarchical nanostructured beta-titanium alloy with high strength [J].
Devaraj, Arun ;
Joshi, Vineet V. ;
Srivastava, Ankit ;
Manandhar, Sandeep ;
Moxson, Vladimir ;
Duz, Volodymyr A. ;
Lavender, Curt .
NATURE COMMUNICATIONS, 2016, 7
[9]   Superior High-Temperature Strength in a Supersaturated Refractory High-Entropy Alloy [J].
Feng, Rui ;
Feng, Bojun ;
Gao, Michael C. ;
Zhang, Chuan ;
Neuefeind, Joerg C. ;
Poplawsky, Jonathan D. ;
Ren, Yang ;
An, Ke ;
Widom, Michael ;
Liaw, Peter K. .
ADVANCED MATERIALS, 2021, 33 (48)
[10]   High-throughput design of high-performance lightweight high-entropy alloys [J].
Feng, Rui ;
Zhang, Chuan ;
Gao, Michael C. ;
Pei, Zongrui ;
Zhang, Fan ;
Chen, Yan ;
Ma, Dong ;
An, Ke ;
Poplawsky, Jonathan D. ;
Ouyang, Lizhi ;
Ren, Yang ;
Hawk, Jeffrey A. ;
Widom, Michael ;
Liaw, Peter K. .
NATURE COMMUNICATIONS, 2021, 12 (01)