A Fault Diagnosis Method of Rotor System Based on Parallel Convolutional Neural Network Architecture with Attention Mechanism

被引:9
|
作者
Zhao, Zhiqian [1 ,2 ]
Jiao, Yinghou [1 ,2 ]
Zhang, Xiang [1 ]
机构
[1] Harbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Lab Vibrat & Noise Control, Harbin 150000, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Rotor system; Fault diagnosis; Feature fusion; Convolutional neural network; Attention mechanism; CLASSIFICATION;
D O I
10.1007/s11265-023-01846-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In practical engineering applications, the working load of the rotor system is changing constantly, and the noise pollution of its working environment is serious, which leads to the performance degradation of traditional fault diagnosis methods. To solve the above problems, we present a novel rotor system fault diagnosis model based on parallel convolutional neural network architecture with attention mechanism (AMPCNN). The model uses convolution kernels of different sizes in parallel channels to process raw data, and based on late feature fusion, a more comprehensive feature map is obtained. Furthermore, the information sharing between the two channels is realized through the attention mechanism so that the effective features of one channel can be reflected in another channel. The performance of the model under variable working conditions is verified by the Machinery Fault Database (MAFAULDA), and the average accuracy is 99.58%. By dividing Gaussian white noise from -9 dB to 2 dB into 11 intervals and adding it to the public data of Wuhan University, the noise resistance performance is verified, and the proposed method can obtain 100% diagnosis accuracy even in the high noise condition. The above experiments show that in terms of load adaptability and noise immunity, the method has higher accuracy than traditional deep learning classification methods.
引用
收藏
页码:965 / 977
页数:13
相关论文
共 50 条
  • [1] A Fault Diagnosis Method of Rotor System Based on Parallel Convolutional Neural Network Architecture with Attention Mechanism
    Zhiqian Zhao
    Yinghou Jiao
    Xiang Zhang
    Journal of Signal Processing Systems, 2023, 95 : 965 - 977
  • [2] A rolling bearing fault diagnosis method based on a convolutional neural network with frequency attention mechanism
    Zhou, Hui
    Liu, Runda
    Li, Yaxin
    Wang, Jiacheng
    Xie, Suchao
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2475 - 2495
  • [3] Fault Diagnosis Method for Bearing Based on Attention Mechanism and Multi-Scale Convolutional Neural Network
    Shen, Qimin
    Zhang, Zengqiang
    IEEE ACCESS, 2024, 12 : 12940 - 12952
  • [4] An Intelligent Fault Diagnosis Method Based on Optimized Parallel Convolutional Neural Network
    Li, Chunhui
    Tang, Youfu
    Lei, Na
    Wang, Xu
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 6160 - 6175
  • [5] WIND TURBINE FAULT DIAGNOSIS METHOD BASED ON PARALLEL CONVOLUTIONAL NEURAL NETWORK
    Meng L.
    Su Y.
    Xu T.
    Kong X.
    Lan X.
    Li Y.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (05): : 449 - 456
  • [6] Multi-View Information Fusion Fault Diagnosis Method Based on Attention Mechanism and Convolutional Neural Network
    Li, Hongmei
    Huang, Jinying
    Gao, Minjuan
    Yang, Luxia
    Bao, Yichen
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [7] An Improved Convolutional-Neural-Network-Based Fault Diagnosis Method for the Rotor-Journal Bearings System
    Luo, Honglin
    Bo, Lin
    Peng, Chang
    Hou, Dongming
    MACHINES, 2022, 10 (07)
  • [8] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771
  • [9] A Novel Method for Bearing Fault Diagnosis Based on a Parallel Deep Convolutional Neural Network
    Lin, Zhuonan
    Wang, Yongxing
    Guo, Yining
    Tong, Xiangrui
    Wei, Fanrong
    Tong, Ning
    SYMMETRY-BASEL, 2024, 16 (04):
  • [10] Bearing Fault Diagnosis Using Convolutional Neural Network Based on a Multi-Attention Mechanism
    Kang T.
    Duan R.
    Yang L.
    Xue J.
    Liao Y.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (12): : 68 - 77