Edge Devices Clustering for Federated Visual Classification: A Feature Norm Based Framework

被引:11
作者
Wei, Xiao-Xiang [1 ]
Huang, Hua [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Data models; Feature extraction; Computational modeling; Visualization; Training; Federated learning; Adaptation models; edge computing; visual classification; feature norm; clients clustering;
D O I
10.1109/TIP.2023.3237014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning is a privacy-preserving distributed learning paradigm where multiple devices collaboratively train a model, which is applicable to edge computing environments. However, the non-IID data distributed in multiple devices degrades the performance of the federated model due to severe weight divergence. This paper presents a clustered federated learning framework named cFedFN for visual classification tasks in order to reduce the degradation. Especially, this framework introduces the computation of feature norm vectors in the local training process and divides the devices into multiple groups by the similarities of the data distributions to reduce the weight divergences for better performance. As a result, this framework gains better performance on non-IID data without leakage of the private raw data. Experiments on various visual classification datasets demonstrate the superiority of this framework over the state-of-the-art clustered federated learning frameworks.
引用
收藏
页码:995 / 1010
页数:16
相关论文
共 67 条
[1]  
Ankerst M., 1999, SIGMOD Record, V28, P49, DOI 10.1145/304181.304187
[2]  
Beery S, 2020, Arxiv, DOI arXiv:2004.10340
[3]  
Briggs C., 2020, 2020 INT JOINT C NEU, P1, DOI DOI 10.1109/IJCNN48605.2020.9207469
[4]  
Caldas S., 2018, arXiv
[5]  
Carreira-Perpi¤an MA, 2015, Arxiv, DOI [arXiv:1503.00687, 10.48550/arXiv.1503.00687]
[6]  
Chacon J. E., 2013, A comparison of bandwidth selectors for mean shift clustering
[7]   FedCluster: Boosting the Convergence of Federated Learning via Cluster-Cycling [J].
Chen, Cheng ;
Chen, Ziyi ;
Zhou, Yi ;
Kailkhura, Bhavya .
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, :5017-5026
[8]  
Chen F, 2019, Arxiv, DOI arXiv:1802.07876
[9]  
Cohen G, 2017, IEEE IJCNN, P2921, DOI 10.1109/IJCNN.2017.7966217
[10]   Mean shift: A robust approach toward feature space analysis [J].
Comaniciu, D ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) :603-619