A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic integro-differential system with infinite delay

被引:4
作者
Dineshkumar, Chendrayan [1 ]
Joo, Young Hoon [1 ,2 ]
机构
[1] Kunsan Natl Univ, Sch IT Informat & Control Engn, Gunsan Si, Jeonbuk, South Korea
[2] Kunsan Natl Univ, Sch IT Informat & Control Engn, 588 Daehak Ro, Gunsan Si 54150, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Atangana-Baleanu derivative; fractional derivatives; infinite delay; integro-differential equation; neutral equations; stochastic equations; EVOLUTION DIFFERENTIAL-INCLUSIONS; EQUATIONS; EXISTENCE;
D O I
10.1002/mma.9093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is primarily targeting the approximate controllability outcomes for the Atangana-Baleanu fractional neutral stochastic integro-differential equation with infinite delay. First, by using stochastic analysis, fractional calculus, and Krasnoselskii fixed point techniques, we demonstrate the existence of mild solutions for the fractional stochastic evolution equations. Then we present a sufficient condition that ensures the approximate controllability of the stochastic evolution equations. Our findings are then applied to nonlocal conditions. At last, an example is provided to define our primary results.
引用
收藏
页码:9922 / 9941
页数:20
相关论文
共 57 条
[1]   Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay [J].
Aimene, D. ;
Baleanu, D. ;
Seba, D. .
CHAOS SOLITONS & FRACTALS, 2019, 128 :51-57
[2]  
[Anonymous], 1992, MultiValued Differential Equations, DOI DOI 10.1515/9783110874228
[3]   Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators [J].
Arjunan, M. Mallika ;
Hamiaz, A. ;
Kavitha, V .
CHAOS SOLITONS & FRACTALS, 2021, 149
[4]   New numerical method and application to Keller-Segel model with fractional order derivative [J].
Atangana, Abdon ;
Alqahtani, Rubayyi T. .
CHAOS SOLITONS & FRACTALS, 2018, 116 :14-21
[5]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[6]   Optimality conditions for fractional differential inclusions with nonsingular Mittag-Leffler kernel [J].
Bahaa, G. M. ;
Hamiaz, Adnane .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,
[7]   Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations [J].
Balasubramaniam, P. .
CHAOS SOLITONS & FRACTALS, 2021, 152
[8]   A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative [J].
Baleanu, Dumitru ;
Jajarmi, Amin ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
CHAOS SOLITONS & FRACTALS, 2020, 134
[9]   Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives [J].
Bedi, Pallavi ;
Kumar, Anoop ;
Khan, Aziz .
CHAOS SOLITONS & FRACTALS, 2021, 150
[10]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505