Nowcasting in a pandemic using non-parametric mixed frequency VARs

被引:31
作者
Huber, Florian [1 ]
Koop, Gary [2 ]
Onorante, Luca [3 ,4 ]
Pfarrhofer, Michael [1 ,6 ,7 ]
Schreiner, Josef [5 ]
机构
[1] Univ Salzburg, Salzburg, Austria
[2] Univ Strathclyde, Strathclyde, England
[3] European Commiss, Joint Res Ctr, Rome, Italy
[4] European Cent Bank, Frankfurt, Germany
[5] Oesterreich Nationalbank, Vienna, Austria
[6] Univ Salzburg, Dept Econ, Monchsberg 2a, A-5020 Salzburg, Austria
[7] Univ Salzburg, Salzburg Ctr European Union Studies SCEUS, Monchsberg2a, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Regression tree models; Bayesian; Macroeconomic forecasting; Vector autoregressions; BART;
D O I
10.1016/j.jeconom.2020.11.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops Bayesian econometric methods for posterior inference in non -parametric mixed frequency VARs using additive regression trees. We argue that regres-sion tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced by the COVID-19 pandemic of 2020. This is due to their flexibility and ability to model outliers. In an application involving four major euro area countries, we find substantial improvements in nowcasting performance relative to a linear mixed frequency VAR.(c) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:52 / 69
页数:18
相关论文
共 25 条
  • [1] Adrian T., 2019, FEDERAL RESERVE BANK, P903
  • [2] Vulnerable Growth
    Adrian, Tobias
    Boyarchenko, Nina
    Giannone, Domenico
    [J]. AMERICAN ECONOMIC REVIEW, 2019, 109 (04) : 1263 - 1289
  • [3] VARIABLE SELECTION FOR BART: AN APPLICATION TO GENE REGULATION
    Bleich, Justin
    Kapelner, Adam
    George, Edward I.
    Jensen, Shane T.
    [J]. ANNALS OF APPLIED STATISTICS, 2014, 8 (03) : 1750 - 1781
  • [4] Forecasting economic activity with mixed frequency BVARs
    Brave, Scott A.
    Butters, R. Andrew
    Justiniano, Alejandro
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2019, 35 (04) : 1692 - 1707
  • [5] Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors
    Carriero, Andrea
    Clark, Todd E.
    Marcellino, Massimiliano
    [J]. JOURNAL OF ECONOMETRICS, 2019, 212 (01) : 137 - 154
  • [6] Bayesian CART model search
    Chipman, HA
    George, EI
    McCulloch, RE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) : 935 - 948
  • [7] BART: BAYESIAN ADDITIVE REGRESSION TREES
    Chipman, Hugh A.
    George, Edward I.
    McCulloch, Robert E.
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (01) : 266 - 298
  • [8] Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility
    Clark, Todd E.
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2011, 29 (03) : 327 - 341
  • [9] Crawford L, 2019, ANN APPL STAT, V13, P958, DOI [10.1214/18-aoas1222, 10.1214/18-AOAS1222]
  • [10] Bayesian Approximate Kernel Regression With Variable Selection
    Crawford, Lorin
    Wood, Kris C.
    Zhou, Xiang
    Mukherjee, Sayan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1710 - 1721