Method of alternating projections for the general absolute value equation

被引:10
作者
Alcantara, Jan Harold [1 ]
Chen, Jein-Shan [2 ]
Tam, Matthew K. [3 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
[3] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Absolute value equation; alternating projections; fixed point sets; ITERATION METHOD; PROXIMAL ALGORITHMS; DOUGLAS-RACHFORD; NEWTON METHOD; CONVERGENCE; COMPLEMENTARITY; CONSTRUCTION;
D O I
10.1007/s11784-022-01026-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
in groundwater resources of Iranshahr using Monte Carlo simulation and geographic information system (GIS). MethodsX, 6 , 1812-1821. Soleimani, H., Nasri, O., Ghoochani, M., Azhdarpoor, A., Dehghani, M., Radfard, M. ... & Heydari, M. (2020). Groundwater quality evaluation and risk assessment of nitrate using monte carlo simulation and sensitivity analysis in rural areas of Divandarreh County, Kurdistan province, Iran. Int J Environ Anal Chem 1-19. to jurisdictional claims in affiliations. Springer Nature or its licensor holds exclusive rights to agreement with the author(s) self-archiving of the accepted is solely governed by the terms and applicable law.
引用
收藏
页数:38
相关论文
共 40 条
  • [1] Solving absolute value equation using complementarity and smoothing functions
    Abdallah, L.
    Haddou, M.
    Migot, T.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 327 : 196 - 207
  • [2] A novel generalization of the natural residual function and a neural network approach for the NCP
    Alcantara, Jan Harold
    Chen, Jein-Shan
    [J]. NEUROCOMPUTING, 2020, 413 : 368 - 382
  • [3] On construction of new NCP functions
    Alcantara, Jan Harold
    Lee, Chen-Han
    Chieu Thanh Nguyen
    Chang, Yu-Lin
    Chen, Jein-Shan
    [J]. OPERATIONS RESEARCH LETTERS, 2020, 48 (02) : 115 - 121
  • [4] [Anonymous], 1965, Soviet Math. Dokl., V162, P688
  • [5] Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods
    Attouch, Hedy
    Bolte, Jerome
    Svaiter, Benar Fux
    [J]. MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) : 91 - 129
  • [6] On the local convergence of the Douglas-Rachford algorithm
    Bauschke, H. H.
    Noll, D.
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (06) : 589 - 600
  • [7] Reflection-projection method for convex feasibility problems with an obtuse cone
    Bauschke, HH
    Kruk, SG
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 120 (03) : 503 - 531
  • [8] On the global convergence of the inexact semi-smooth Newton method for absolute value equation
    Bello Cruz, J. Y.
    Ferreira, O. P.
    Prudente, L. F.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (01) : 93 - 108
  • [9] A globally and quadratically convergent method for absolute value equations
    Caccetta, Louis
    Qu, Biao
    Zhou, Guanglu
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (01) : 45 - 58
  • [10] Chen CR, 2021, Arxiv, DOI arXiv:2103.09398