Method of alternating projections for the general absolute value equation

被引:15
作者
Alcantara, Jan Harold [1 ]
Chen, Jein-Shan [2 ]
Tam, Matthew K. [3 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
[3] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Absolute value equation; alternating projections; fixed point sets; ITERATION METHOD; PROXIMAL ALGORITHMS; DOUGLAS-RACHFORD; NEWTON METHOD; CONVERGENCE; COMPLEMENTARITY; CONSTRUCTION;
D O I
10.1007/s11784-022-01026-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
in groundwater resources of Iranshahr using Monte Carlo simulation and geographic information system (GIS). MethodsX, 6 , 1812-1821. Soleimani, H., Nasri, O., Ghoochani, M., Azhdarpoor, A., Dehghani, M., Radfard, M. ... & Heydari, M. (2020). Groundwater quality evaluation and risk assessment of nitrate using monte carlo simulation and sensitivity analysis in rural areas of Divandarreh County, Kurdistan province, Iran. Int J Environ Anal Chem 1-19. to jurisdictional claims in affiliations. Springer Nature or its licensor holds exclusive rights to agreement with the author(s) self-archiving of the accepted is solely governed by the terms and applicable law.
引用
收藏
页数:38
相关论文
共 40 条
[1]   Solving absolute value equation using complementarity and smoothing functions [J].
Abdallah, L. ;
Haddou, M. ;
Migot, T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 327 :196-207
[2]   A novel generalization of the natural residual function and a neural network approach for the NCP [J].
Alcantara, Jan Harold ;
Chen, Jein-Shan .
NEUROCOMPUTING, 2020, 413 :368-382
[3]   On construction of new NCP functions [J].
Alcantara, Jan Harold ;
Lee, Chen-Han ;
Chieu Thanh Nguyen ;
Chang, Yu-Lin ;
Chen, Jein-Shan .
OPERATIONS RESEARCH LETTERS, 2020, 48 (02) :115-121
[4]   Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods [J].
Attouch, Hedy ;
Bolte, Jerome ;
Svaiter, Benar Fux .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :91-129
[5]   On the local convergence of the Douglas-Rachford algorithm [J].
Bauschke, H. H. ;
Noll, D. .
ARCHIV DER MATHEMATIK, 2014, 102 (06) :589-600
[6]   Reflection-projection method for convex feasibility problems with an obtuse cone [J].
Bauschke, HH ;
Kruk, SG .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 120 (03) :503-531
[7]   On the global convergence of the inexact semi-smooth Newton method for absolute value equation [J].
Bello Cruz, J. Y. ;
Ferreira, O. P. ;
Prudente, L. F. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (01) :93-108
[8]  
Bregman L.M., 1965, Dokl. Akad. Nauk. SSSR, V162, P688
[9]   A globally and quadratically convergent method for absolute value equations [J].
Caccetta, Louis ;
Qu, Biao ;
Zhou, Guanglu .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (01) :45-58
[10]  
Chen CR, 2021, Arxiv, DOI arXiv:2103.09398