Broad Temperature Plateau for High Thermoelectric Properties of n-Type Bi2Te2.7Se0.3 by 3D Printing-Driven Defect Engineering

被引:20
作者
Hu, Qiujun [1 ]
Luo, Ding [2 ]
Guo, Junbiao [3 ]
Qiu, Wenbin [3 ]
Wu, Xiaoyong [4 ]
Yang, Lei [5 ]
Wang, Zhengshang [6 ]
Cui, Xudong [6 ]
Tang, Jun [3 ,7 ]
机构
[1] Sichuan Univ, Coll Phys, Chengdu 610064, Peoples R China
[2] Univ Nottingham, Fac Engn, Nottingham, England
[3] Sichuan Univ, Inst Nucl Sci & Technol, Key Lab Radiat Phys & Technol, Minist Educ, Chengdu 610064, Peoples R China
[4] Nucl Power Inst China, Chengdu 610041, Sichuan, Peoples R China
[5] Sichuan Univ, Sch Mat Sci & Engn, Chengdu 610064, Peoples R China
[6] China Acad Engn Phys, Inst Chem Mat, Sichuan Res Ctr New Mat, Chengdu 610200, Peoples R China
[7] Sichuan Univ, Inst Nucl Sci & Technol, Coll Phys, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
n-type Bi2Te2.7Se0.3; 3D printing; defect engineering; average ZT; thermoelectric generators; PERFORMANCE; BI2TE3; ALLOY; POWER; MICROSTRUCTURE; ZT;
D O I
10.1021/acsami.2c19131
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-energy-conversion Bi2Te3-based thermoelectric generators (TEGs) are needed to ensure that the assembled material has a high value of average figure of merit (ZTave). However, the inferior ZTave of the n-type leg severely restricts the large-scale applications of Bi2Te3-based TEGs. In this study, we achieved and reported a high peak ZT (1.33) of three-dimensional (3D)printing n-type Bi2Te2.7Se0.3. In addition, a superior ZT(ave) of 1.23 at a temperature ranging from 300 to 500 K was achieved. The high value of ZT(ave) was obtained by synergistically optimizing the electronic- and phonon-transport properties using the 3D-printing-driven defect engineering. The nonequilibrium solidification mechanism facilitated the multiscale defects formed during the 3D-printed process. Among the defects formed, the nanotwins triggered the energy-filtering effect, thus enhancing the Seebeck coefficient at a temperature range of 300-500 K. The effective scattering of wide-frequency phonons by multiscale defects reduced the lattice thermal conductivity close to the theoretical minimum of similar to 0.35 W m(-1) k(-1). Given the advantages of 3D printing in freeform device shapes, we assembled and measured bionic honeycombshaped single-leg TEGs, exhibiting a record-high energy conversion efficiency (10.2%). This work demonstrates the great potential of defect engineering driven by selective laser melting 3D-printing technology for the rational design of advanced n-type Bi2Te2.7Se0.3 thermoelectric material.
引用
收藏
页码:1296 / 1304
页数:9
相关论文
共 47 条
[1]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[2]   Role of quantum confinement in giving rise to high electron mobility in GaN nanowall networks [J].
Bhasker, H. P. ;
Thakur, Varun ;
Shivaprasad, S. M. ;
Dhar, S. .
SOLID STATE COMMUNICATIONS, 2015, 220 :72-76
[3]   Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges [J].
Chen, Liang-Yu ;
Liang, Shun-Xing ;
Liu, Yujing ;
Zhang, Lai-Chang .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2021, 146
[4]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[5]   Thermoelectric cooling and power generation [J].
DiSalvo, FJ .
SCIENCE, 1999, 285 (5428) :703-706
[6]   Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles [J].
Dou, Y. C. ;
Qin, X. Y. ;
Li, D. ;
Li, L. L. ;
Zou, T. H. ;
Wang, Q. Q. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (04)
[7]   Multi-scale defects in powder-based additively manufactured metals and alloys [J].
Fu, J. ;
Li, H. ;
Song, X. ;
Fu, M. W. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 122 :165-199
[8]   Bi2Te3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties [J].
Fu, Jipeng ;
Song, Shuyan ;
Zhang, Xiaoguang ;
Cao, Feng ;
Zhou, Liang ;
Li, Xiyan ;
Zhang, Hongjie .
CRYSTENGCOMM, 2012, 14 (06) :2159-2165
[9]   Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction [J].
Hu, Li-Peng ;
Zhu, Tie-Jun ;
Wang, Ya-Guang ;
Xie, Han-Hui ;
Xu, Zhao-Jun ;
Zhao, Xin-Bing .
NPG ASIA MATERIALS, 2014, 6 :e88-e88
[10]   Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n-Type Bismuth-Telluride-Based Solid Solutions [J].
Hu, Lipeng ;
Wu, Haijun ;
Zhu, Tiejun ;
Fu, Chenguang ;
He, Jiaqing ;
Ying, Pingjun ;
Zhao, Xinbing .
ADVANCED ENERGY MATERIALS, 2015, 5 (17)