Modular Engineering Strategy to Redirect Electron Flux into the Electron-Transfer Chain for Enhancing Extracellular Electron Transfer in Shewanella oneidensis

被引:19
|
作者
Ding, Qinran [1 ,2 ,3 ]
Liu, Qijing [1 ,2 ,3 ]
Zhang, Yan [1 ,2 ,3 ]
Li, Feng [1 ,2 ,3 ]
Song, Hao [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Frontiers Sci Ctr Synthet Biol, Minist Educ, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Key Lab Syst Bioengn, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
来源
ACS SYNTHETIC BIOLOGY | 2023年 / 12卷 / 02期
基金
中国国家自然科学基金;
关键词
extracellular electron transfer; Shewanella oneidensis; substrate uptake; intracellular NADH regeneration; redirected electron flux; synthetic biology; BIOELECTRICITY GENERATION; METABOLISM; MECHANISMS; MR-1; FERMENTATION; MANIPULATION; RESPIRATION; PERFORMANCE; LACTATE;
D O I
10.1021/acssynbio.2c00408
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Efficient extracellular electron transfer (EET) of exoelectrogens is critical for practical applications of various bioelectrochemical systems. However, the low efficiency of electron transfer remains a major bottleneck. In this study, a modular engineering strategy, including broadening the sources of the intracellular electron pool, enhancing intracellular nicotinamide adenine dinucleotide (NADH) regeneration, and promoting electron release from electron pools, was developed to redirect electron flux into the electron transfer chain in Shewanella oneidensis MR-1. Among them, four genes include gene SO1522 encoding a lactate transporter for broadening the sources of the intracellular electron pool, gene gapA encoding a glyceraldehyde-3phosphate dehydrogenase and gene mdh encoding a malate dehydrogenase in the central carbon metabolism for enhancing intracellular NADH regeneration, and gene ndh encoding NADH dehydrogenase on the inner membrane for releasing electrons from intracellular electron pools into the electron-transport chain. Upon assembly of the four genes, electron flux was directly redirected from the electron donor to the electron-transfer chain, achieving 62% increase in intracellular NADH levels, which resulted in a 3.5-fold enhancement in the power density from 59.5 +/- 3.2 mW/m2 (wild type) to 270.0 +/- 12.7 mW/m2 (recombinant strain). This study confirmed that redirecting electron flux from the electron donor to the electron-transfer chain is a viable approach to enhance the EET rate of S. oneidensis.
引用
收藏
页码:471 / 481
页数:11
相关论文
共 50 条
  • [21] Metabolomic analyses show that electron donor and acceptor ratios control anaerobic electron transfer pathways in Shewanella oneidensis
    Hui Wang
    Elon Correa
    Warwick B. Dunn
    Catherine L. Winder
    Royston Goodacre
    Jonathan R. Lloyd
    Metabolomics, 2013, 9 : 642 - 656
  • [22] Electrochemical in situ FTIR spectroscopy studies directly extracellular electron transfer of Shewanella oneidensis MR-1
    You, Le-Xing
    Rao, Lu
    Tian, Xiao-Chun
    Wu, Ran-Ran
    Wu, Xuee
    Zhao, Feng
    Jiang, Yan-Xia
    Sun, Shi-Gang
    ELECTROCHIMICA ACTA, 2015, 170 : 131 - 139
  • [23] Coupling riboflavin de novo biosynthesis and cytochrome expression for improving extracellular electron transfer efficiency in Shewanella oneidensis
    Li, Yan
    Li, Yuanyuan
    Chen, Yaru
    Cheng, Meijie
    Yu, Huan
    Song, Hao
    Cao, Yingxiu
    BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (10) : 2806 - 2818
  • [24] Axial Ligation of Heme in c-Type Cytochromes of Living Shewanella oneidensis: A New Insight into Enhanced Extracellular Electron Transfer
    Yuan, Yong
    Li, Laicai
    Zhou, Shungui
    CHEMELECTROCHEM, 2015, 2 (11): : 1672 - 1677
  • [25] Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis
    Peng, Luo
    You, Shi-Jie
    Wang, Jing-Yuan
    BIOSENSORS & BIOELECTRONICS, 2010, 25 (05) : 1248 - 1251
  • [26] Extracellular electron transfer
    Hernandez, ME
    Newman, DK
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (11) : 1562 - 1571
  • [27] Pyruvate Accelerates Palladium Reduction by Regulating Catabolism and the Electron Transfer Pathway in Shewanella oneidensis
    Cheng, Yuan-Yuan
    Wang, Wen-Jing
    Ding, Shi-Ting
    Zhang, Ming-Xing
    Tang, Ai-Guo
    Zhang, Ling
    Li, Dao-Bo
    Li, Bing-Bing
    Deng, Guo-Zhi
    Wu, Chao
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2021, 87 (08) : 1 - 14
  • [28] Accelerating the extracellular electron transfer of Shewanella oneidensis MR-1 by carbon dots: The role of carbon dots concentration
    Zhang, Peng
    Yang, Chenhui
    Li, Zeng
    Liu, Jia
    Xiao, Xiang
    Li, Da
    Chen, Chong
    Yu, Miao
    Feng, Yujie
    ELECTROCHIMICA ACTA, 2022, 421
  • [29] Advances in interfacial engineering for enhanced microbial extracellular electron transfer
    Wang, Yi-Xuan
    Hou, Nannan
    Liu, Xiao-Li
    Mu, Yang
    BIORESOURCE TECHNOLOGY, 2022, 345
  • [30] The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer
    Shi, Liang
    Richardson, David J.
    Wang, Zheming
    Kerisit, Sebastien N.
    Rosso, Kevin M.
    Zachara, John M.
    Fredrickson, James K.
    ENVIRONMENTAL MICROBIOLOGY REPORTS, 2009, 1 (04): : 220 - 227