Modular Engineering Strategy to Redirect Electron Flux into the Electron-Transfer Chain for Enhancing Extracellular Electron Transfer in Shewanella oneidensis

被引:22
作者
Ding, Qinran [1 ,2 ,3 ]
Liu, Qijing [1 ,2 ,3 ]
Zhang, Yan [1 ,2 ,3 ]
Li, Feng [1 ,2 ,3 ]
Song, Hao [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Frontiers Sci Ctr Synthet Biol, Minist Educ, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Key Lab Syst Bioengn, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
extracellular electron transfer; Shewanella oneidensis; substrate uptake; intracellular NADH regeneration; redirected electron flux; synthetic biology; BIOELECTRICITY GENERATION; METABOLISM; MECHANISMS; MR-1; FERMENTATION; MANIPULATION; RESPIRATION; PERFORMANCE; LACTATE;
D O I
10.1021/acssynbio.2c00408
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Efficient extracellular electron transfer (EET) of exoelectrogens is critical for practical applications of various bioelectrochemical systems. However, the low efficiency of electron transfer remains a major bottleneck. In this study, a modular engineering strategy, including broadening the sources of the intracellular electron pool, enhancing intracellular nicotinamide adenine dinucleotide (NADH) regeneration, and promoting electron release from electron pools, was developed to redirect electron flux into the electron transfer chain in Shewanella oneidensis MR-1. Among them, four genes include gene SO1522 encoding a lactate transporter for broadening the sources of the intracellular electron pool, gene gapA encoding a glyceraldehyde-3phosphate dehydrogenase and gene mdh encoding a malate dehydrogenase in the central carbon metabolism for enhancing intracellular NADH regeneration, and gene ndh encoding NADH dehydrogenase on the inner membrane for releasing electrons from intracellular electron pools into the electron-transport chain. Upon assembly of the four genes, electron flux was directly redirected from the electron donor to the electron-transfer chain, achieving 62% increase in intracellular NADH levels, which resulted in a 3.5-fold enhancement in the power density from 59.5 +/- 3.2 mW/m2 (wild type) to 270.0 +/- 12.7 mW/m2 (recombinant strain). This study confirmed that redirecting electron flux from the electron donor to the electron-transfer chain is a viable approach to enhance the EET rate of S. oneidensis.
引用
收藏
页码:471 / 481
页数:11
相关论文
共 57 条
[1]   Engineering Wired Life: Synthetic Biology for Electroactive Bacteria [J].
Bird, Lina J. ;
Kundu, Biki B. ;
Tschirhart, Tanya ;
Corts, Anna D. ;
Su, Lin ;
Gralnick, Jeffrey A. ;
Ajo-Franklin, Caroline M. ;
Glaven, Sarah M. .
ACS SYNTHETIC BIOLOGY, 2021, 10 (11) :2808-2823
[2]   Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq [J].
Brutinel, Evan D. ;
Gralnick, Jeffrey A. .
MOLECULAR MICROBIOLOGY, 2012, 86 (02) :273-283
[3]   Acetoin production via unbalanced fermentation in Shewanella oneidensis [J].
Bursac, Thea ;
Gralnick, Jeffrey A. ;
Gescher, Johannes .
BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (06) :1283-1289
[4]   Fundamentals, Applications, and Future Directions of Bioelectrocatalysis [J].
Chen, Hui ;
Simoska, Olja ;
Lim, Koun ;
Grattieri, Matteo ;
Yuan, Mengwei ;
Dong, Fangyuan ;
Lee, Yoo Seok ;
Beaver, Kevin ;
Weliwatte, Samali ;
Gaffney, Erin M. ;
Minteer, Shelley D. .
CHEMICAL REVIEWS, 2020, 120 (23) :12903-12993
[5]   The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials [J].
Chen, Hui ;
Dong, Fangyuan ;
Minteer, Shelley D. .
NATURE CATALYSIS, 2020, 3 (03) :225-244
[6]   Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock [J].
Chen, Po-Ting ;
Hong, Zih-Syuan ;
Cheng, Chieh-Lun ;
Ng, I-Son ;
Lo, Yung-Chung ;
Nagarajan, Dillirani ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2020, 308
[7]   CRISPR/dCas9-RpoD-Mediated Simultaneous Transcriptional Activation and Repression in Shewanella oneidensis MR-1 [J].
Chen, Yaru ;
Niu, Xiaolong ;
Cheng, Meijie ;
Wang, Luxin ;
Sun, Panxing ;
Song, Hao ;
Cao, Yingxiu .
ACS SYNTHETIC BIOLOGY, 2022, 11 (06) :2184-2192
[8]   Engineered cytochrome fused extracellular matrix enabled efficient extracellular electron transfer and improved performance of microbial fuel cell [J].
Chen, Yuan-Yuan ;
Yang, Fu-Qiao ;
Xu, Nuo ;
Wang, Xing-Qiang ;
Xie, Peng-Cheng ;
Wang, Yan-Zhai ;
Fang, Zhen ;
Yong, Yang-Chun .
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 830
[9]   Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level [J].
Cheng, Zhou-Hua ;
Xiong, Jia-Rui ;
Min, Di ;
Cheng, Lei ;
Liu, Dong-Feng ;
Li, Wen-Wei ;
Jin, Fan ;
Yang, Min ;
Yu, Han-Qing .
BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (05) :1294-1303
[10]   Growth Trade-Offs Accompany the Emergence of Glycolytic Metabolism in Shewanella oneidensis MR-1 [J].
Chubiz, Lon M. ;
Marx, Christopher J. .
JOURNAL OF BACTERIOLOGY, 2017, 199 (11)