Sperm-cell DNA fragmentation prediction using label-free quantitative phase imaging and deep learning

被引:11
|
作者
Noy, Lioz [1 ]
Barnea, Itay [1 ]
Mirsky, Simcha K. [1 ]
Kamber, Dotan [1 ]
Levi, Mattan [1 ]
Shaked, Natan T. [1 ,2 ]
机构
[1] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Tel Aviv, Israel
[2] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, IL-69978 Ramat Aviv, Israel
关键词
cell classification; DNA fragmentation; in vitro fertilization; quantitative phase imaging; MICROSCOPY; SELECTION;
D O I
10.1002/cyto.a.24703
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In intracytoplasmic sperm injection (ICSI), a single sperm cell is selected and injected into an egg. The quality of the chosen sperm and specifically its DNA fragmentation have a significant effect on the fertilization success rate. However, there is no method today to measure the DNA fragmentation of live and unstained cells during ICSI. We present a new method to predict the DNA fragmentation of sperm cells using multi-layer stain-free imaging data, including quantitative phase imaging, and lightweight deep learning architectures. The DNA fragmentation ground truth is achieved by staining the cells with acridine orange and imaging them via fluorescence microscopy. Our prediction model is based on the MobileNet convolutional neural network architecture combined with confidence measurement determined by distances between vectors in the latent space. Our results show that the mean absolute error for cells with high prediction confidence is 0.05 and the 90th percentile mean absolute error is 0.1, where the range of DNA fragmentation score is [0,1]. In the future, this model may be applied to improve cell selection by embryologists during ICSI.
引用
收藏
页码:470 / 478
页数:9
相关论文
共 50 条
  • [21] A Time-lapse, Label-free, Quantitative Phase Imaging Study of Dormant and Active Human Cancer Cells
    Huang, Jing
    Guo, Peng
    Moses, Marsha A.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (132):
  • [22] Label-free single-shot imaging with on-axis phase-shifting holographic reflectance quantitative phase microscopy
    Liu, Hanzi
    Wu, Xiaoyan
    Liu, Guodong
    Ren, Hongliang
    Vinu, R. V.
    Chen, Ziyang
    Pu, Jixiong
    JOURNAL OF BIOPHOTONICS, 2022, 15 (07)
  • [23] Label-Free Virtual HER2 Immunohistochemical Staining of Breast Tissue using Deep Learning
    Bai, Bijie
    Wang, Hongda
    Li, Yuzhu
    De Haan, Kevin
    Colonnese, Francesco
    Wan, Yujie
    Zuo, Jingyi
    Doan, Ngan B.
    Zhang, Xiaoran
    Zhang, Yijie
    Li, Jingxi
    Yang, Xilin
    Dong, Wenjie
    Darrow, Morgan Angus
    Kamangar, Elham
    Lee, Han Sung
    Rivenson, Yair
    Ozcan, Aydogan
    BME FRONTIERS, 2022, 2022
  • [24] Quantitative multiphoton imaging of cell metabolism, stromal fibers, and keratinization enables label-free discrimination of esophageal squamous cell carcinoma
    Xiang, Feng
    Yu, Jia
    Jiang, Danling
    Hu, Weiwang
    Zhang, Rongli
    Huang, Chenming
    Gao, Yufeng
    Zheng, Aiping
    Wu, Ting-Ming
    Liu, Tzu-ming
    Zheng, Wei
    Li, Xi
    Li, Hui
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (08) : 4137 - 4155
  • [25] Deep learning-based label-free hematology analysis framework using optical diffraction tomography
    Ryu, Dongmin
    Bak, Taeyoung
    Ahn, Daewoong
    Kang, Hayoung
    Oh, Sanggeun
    Min, Hyun-seok
    Lee, Sumin
    Lee, Jimin
    HELIYON, 2023, 9 (08)
  • [26] Identification and Staging of B-Cell Acute Lymphoblastic Leukemia Using Quantitative Phase Imaging and Machine Learning
    Ayyappan, Vinay
    Chang, Alex
    Zhang, Chi
    Paidi, Santosh Kumar
    Bordett, Rosalie
    Liang, Tiffany
    Barman, Ishan
    Pandey, Rishikesh
    ACS SENSORS, 2020, 5 (10): : 3281 - 3289
  • [27] Quantitative temporal interrogation in 3D of bioengineered human cartilage using multimodal label-free imaging
    Moura, Catarina Costa
    Lanham, Stuart A.
    Monfort, Tual
    Bourdakos, Konstantinos N.
    Tare, Rahul S.
    Oreffo, Richard O. C.
    Mahajan, Sumeet
    INTEGRATIVE BIOLOGY, 2018, 10 (10) : 635 - 645
  • [28] Label-free screening of brain tissue myelin content using phase imaging with computational specificity (PICS)
    Fanous, Michael
    Shi, Chuqiao
    Caputo, Megan P.
    Rund, Laurie A.
    Johnson, Rodney W.
    Das, Tapas
    Kuchan, Matthew J.
    Sobh, Nahil
    Popescu, Gabriel
    APL PHOTONICS, 2021, 6 (07)
  • [29] Quantitative Phase Imaging Using Deep Learning-Based Holographic Microscope
    Di, Jianglei
    Wu, Ji
    Wang, Kaiqiang
    Tang, Ju
    Li, Ying
    Zhao, Jianlin
    FRONTIERS IN PHYSICS, 2021, 9
  • [30] Label-Free Live-Cell Imaging of Nucleic Acids Using Stimulated Raman Scattering Microscopy
    Zhang, Xu
    Roeffaers, Maarten B. J.
    Basu, Srinjan
    Daniele, Joseph R.
    Fu, Dan
    Freudiger, Christian W.
    Holtom, Gary R.
    Xie, X. Sunney
    CHEMPHYSCHEM, 2012, 13 (04) : 1054 - 1059