Semi-HFL: semi-supervised federated learning for heterogeneous devices

被引:7
|
作者
Zhong, Zhengyi [1 ]
Wang, Ji [1 ]
Bao, Weidong [1 ]
Zhou, Jingxuan [1 ]
Zhu, Xiaomin [1 ]
Zhang, Xiongtao [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Deya Rd, Changsha 410000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; System heterogeneity; Semi-supervised learning; Multi-branch model;
D O I
10.1007/s40747-022-00894-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the vanilla federated learning (FL) framework, the central server distributes a globally unified model to each client and uses labeled samples for training. However, in most cases, clients are equipped with different devices and are exposed to a variety of situations. There are great differences between clients in storage, computing, communication, and other resources, which makes unified deep models used in traditional FL cannot fit clients' personalized resource conditions. Furthermore, a great deal of labeled data is needed in traditional FL, whereas data labeling requires a great investment of time and resources, which is hard to do for individual clients. As a result, clients only have a vast amount of unlabeled data, which goes against the federated learning needs. To address the aforementioned two issues, we propose Semi-HFL, a semi-supervised federated learning approach for heterogeneous devices, which divides a deep model into a series of small submodels by inserting early exit branches to meet the resource requirements of different devices. Furthermore, considering the availability of labeled data, Semi-HFL introduces semi-supervised techniques for training in the above heterogeneous learning process. Specifically, two training phases are included in the semi-supervised learning process, unsupervised learning on clients and supervised learning on the server, which makes full use of clients' unlabeled data. Through image classification, text classification, next-word prediction, and multi-task FL experiments based on five kinds of datasets, it is verified that compared with the traditional homogeneous learning method, Semi-HFL not only achieves higher accuracies but also significantly reduces the global resource overhead.
引用
收藏
页码:1995 / 2017
页数:23
相关论文
共 50 条
  • [21] ACMFed: Fair Semi-Supervised Federated Learning With Additional Compromise Model
    Kim, Dohyoung
    Lee, Kangyoon
    Lee, Youngho
    Woo, Hyekyung
    IEEE ACCESS, 2025, 13 : 47734 - 47747
  • [22] SemiPFL: Personalized Semi-Supervised Federated Learning Framework for Edge Intelligence
    Tashakori, Arvin
    Zhang, Wenwen
    Wang, Z. Jane
    Servati, Peyman
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) : 9161 - 9176
  • [23] FedECG: A federated semi-supervised learning framework for electrocardiogram abnormalities prediction
    Ying, Zuobin
    Zhang, Guoyang
    Pan, Zijie
    Chu, Chiawei
    Liu, Ximeng
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (06)
  • [24] Multi-Party Federated Recommendation Based on Semi-Supervised Learning
    Liu, Xin
    Lv, Jiuluan
    Chen, Feng
    Wei, Qingjie
    He, Hangxuan
    Qian, Ying
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (04) : 356 - 370
  • [25] Improving Semi-supervised Federated Learning by Reducing the Gradient Diversity of Models
    Zhang, Zhengming
    Yang, Yaoqing
    Yao, Zhewei
    Yan, Yujun
    Gonzalez, Joseph E.
    Ramchandran, Kannan
    Mahoney, Michael W.
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 1214 - 1225
  • [26] A federated semi-supervised learning approach for network traffic classification
    Jin, Zhiping
    Liang, Zhibiao
    He, Meirong
    Peng, Yao
    Xue, Hanxiao
    Wang, Yu
    INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, 2023, 33 (03)
  • [27] On semi-supervised learning
    Cholaquidis, A.
    Fraiman, R.
    Sued, M.
    TEST, 2020, 29 (04) : 914 - 937
  • [28] On semi-supervised learning
    A. Cholaquidis
    R. Fraiman
    M. Sued
    TEST, 2020, 29 : 914 - 937
  • [29] CHESSFL: Clustering Hierarchical Embeddings for Semi-Supervised Federated Learning
    Farcas, Allen-Jasmin
    Lee, Myungjin
    Payani, Ali
    Latapie, Hugo
    Kompella, Ramana Rao
    Marculescu, Radu
    9TH ACM/IEEE CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTATION, IOTDI 2024, 2024, : 122 - 133
  • [30] Semi-supervised learning in unbalanced networks with heterogeneous degree
    Li, Ting
    Ying, Ningchen
    Yu, Xianshi
    Jing, Bing-Yi
    STATISTICS AND ITS INTERFACE, 2024, 17 (03) : 501 - 516