Sequential patent trading recommendation using knowledge-aware attentional bidirectional long short-term memory network (KBiLSTM)
被引:5
作者:
Du, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Informat, 59 Zhongguancun St, Beijing 100872, Peoples R ChinaRenmin Univ China, Sch Informat, 59 Zhongguancun St, Beijing 100872, Peoples R China
Du, Wei
[1
]
Jiang, Guanran
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Informat, 59 Zhongguancun St, Beijing 100872, Peoples R ChinaRenmin Univ China, Sch Informat, 59 Zhongguancun St, Beijing 100872, Peoples R China
Jiang, Guanran
[1
]
Xu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Informat, 59 Zhongguancun St, Beijing 100872, Peoples R ChinaRenmin Univ China, Sch Informat, 59 Zhongguancun St, Beijing 100872, Peoples R China
Xu, Wei
[1
]
Ma, Jian
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Informat Syst, Hong Kong, Peoples R ChinaRenmin Univ China, Sch Informat, 59 Zhongguancun St, Beijing 100872, Peoples R China
Ma, Jian
[2
]
机构:
[1] Renmin Univ China, Sch Informat, 59 Zhongguancun St, Beijing 100872, Peoples R China
[2] City Univ Hong Kong, Dept Informat Syst, Hong Kong, Peoples R China
With the rapid development of the patent marketplace, patent trading recommendation is required to mitigate the technology searching cost of patent buyers. Current research focuses on the recommendation based on existing patents of a company; a few studies take into account the sequential pattern of patent acquisition activities and the possible diversity of a company's business interests. Moreover, the profiling of patents based on solely patent documents fails to capture the high-order information of patents. To bridge the gap, we propose a knowledge-aware attentional bidirectional long short-term memory network (KBiLSTM) method for patent trading recommendation. KBiLSTM uses knowledge graph embeddings to profile patents with rich patent information. It introduces bidirectional long short-term memory network (BiLSTM) to capture the sequential pattern in a company's historical records. In addition, to address a company's diverse technology interests, we design an attention mechanism to aggregate the company's historical patents given a candidate patent. Experimental results on the United States Patent and Trademark Office (USPTO) data set show that KBiLSTM outperforms state-of-the-art baselines for patent trading recommendation in terms of F1 and normalised discounted cumulative gain (nDCG). The attention visualisation of randomly selected company intuitively demonstrates the recommendation effectiveness.
机构:
Mitre Corp, Social & Behav Sci Dept, 7525 Colshire Dr, Mclean, VA 22102 USAMitre Corp, Social & Behav Sci Dept, 7525 Colshire Dr, Mclean, VA 22102 USA
Comins, Jordan A.
Carmack, Stephanie A.
论文数: 0引用数: 0
h-index: 0
机构:
NIDA, NIH, Baltimore, MD 21224 USA
George Mason Univ, Ctr Adapt Syst Brain Body Interact, Fairfax, VA 22030 USAMitre Corp, Social & Behav Sci Dept, 7525 Colshire Dr, Mclean, VA 22102 USA
Carmack, Stephanie A.
Leydesdorff, Loet
论文数: 0引用数: 0
h-index: 0
机构:
Univ Amsterdam, Amsterdam Sch Commun Res ASCoR, POB 15793, NL-1001 NG Amsterdam, NetherlandsMitre Corp, Social & Behav Sci Dept, 7525 Colshire Dr, Mclean, VA 22102 USA
机构:
Mitre Corp, Social & Behav Sci Dept, 7525 Colshire Dr, Mclean, VA 22102 USAMitre Corp, Social & Behav Sci Dept, 7525 Colshire Dr, Mclean, VA 22102 USA
Comins, Jordan A.
Carmack, Stephanie A.
论文数: 0引用数: 0
h-index: 0
机构:
NIDA, NIH, Baltimore, MD 21224 USA
George Mason Univ, Ctr Adapt Syst Brain Body Interact, Fairfax, VA 22030 USAMitre Corp, Social & Behav Sci Dept, 7525 Colshire Dr, Mclean, VA 22102 USA
Carmack, Stephanie A.
Leydesdorff, Loet
论文数: 0引用数: 0
h-index: 0
机构:
Univ Amsterdam, Amsterdam Sch Commun Res ASCoR, POB 15793, NL-1001 NG Amsterdam, NetherlandsMitre Corp, Social & Behav Sci Dept, 7525 Colshire Dr, Mclean, VA 22102 USA