Skew Ornstein-Uhlenbeck processes with sticky reflection and their applications to bond pricing

被引:0
|
作者
Song, Shiyu [1 ]
Xu, Guangli [2 ]
机构
[1] Weifang Univ, Sch Math & Stat, Weifang 261061, Peoples R China
[2] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
Skew Ornstein-Uhlenbeck process; sticky reflection; Green function; first hitting time; zero-coupon bond; 1ST PASSAGE TIMES; BROWNIAN-MOTION; BESSEL; LIMIT;
D O I
10.1017/jpr.2023.110
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a skew Ornstein-Uhlenbeck process with zero being a sticky reflecting boundary, which is defined as the weak solution to a stochastic differential equation (SDE) system involving local time. The main results obtained include: (i) the existence and uniqueness of solutions to the SDE system, (ii) the scale function and speed measure, and (iii) the distributional properties regarding the transition density and the first hitting times. On the application side, we apply the process to interest rate modeling and obtain the explicit pricing formula for zero-coupon bonds. Numerical examples illustrate the impacts on bond yields of skewness and stickiness parameters.
引用
收藏
页码:1172 / 1195
页数:24
相关论文
共 26 条
  • [1] Skew Ornstein-Uhlenbeck processes and their financial applications
    Wang, Suxin
    Song, Shiyu
    Wang, Yongjin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 363 - 382
  • [2] Subdiffusive Ornstein-Uhlenbeck Processes and Applications to Finance
    Onalan, Omer
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL II, 2015, : 697 - 703
  • [3] Parameter estimation for the skew Ornstein-Uhlenbeck processes based on discrete observations
    Xing, Xiaoyu
    Zhao, Danfeng
    Li, Bing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (09) : 2176 - 2188
  • [4] Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process
    Bai, Yizhou
    Wang, Yongjin
    Zhang, Haoyan
    Zhuo, Xiaoyang
    COMPUTATIONAL ECONOMICS, 2022, 60 (02) : 479 - 527
  • [5] Quickest Detection Problems for Ornstein-Uhlenbeck Processes
    Glover, Kristoffer
    Peskir, Goran
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (02) : 1045 - 1064
  • [6] MARKOV-MODULATED ORNSTEIN-UHLENBECK PROCESSES
    Huang, G.
    Jansen, H. M.
    Mandjes, M.
    Spreij, P.
    De Turck, K.
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (01) : 235 - 254
  • [7] Application of the Kelly Criterion to Ornstein-Uhlenbeck Processes
    Lv, Yingdong
    Meister, Bernhard K.
    COMPLEX SCIENCES, PT 1, 2009, 4 : 1051 - 1062
  • [8] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    Xiao WeiLin
    Zhang WeiGuo
    Zhang XiLi
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1497 - 1511
  • [9] Characterising the nonequilibrium stationary states of Ornstein-Uhlenbeck processes
    Godreche, Claude
    Luck, Jean-Marc
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (03)
  • [10] About the infinite dimensional skew and obliquely reflected Ornstein-Uhlenbeck process
    Roeckner, Michael
    Trutnau, Gerald
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2015, 18 (04)