GSDNet: A deep learning model for downscaling the significant wave height based on NAFNet

被引:5
作者
Wu, Xiaoyu [1 ,2 ,3 ,4 ]
Zhao, Rui [1 ,2 ,3 ,4 ]
Chen, Hongyi [4 ]
Wang, Zijia [5 ]
Yu, Chen [4 ]
Jiang, Xingjie [2 ,3 ,6 ,7 ]
Liu, Weiguo [1 ]
Song, Zhenya [2 ,3 ,6 ,7 ]
机构
[1] Shandong Univ, Sch Software, Jinan 250101, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 1, Qingdao 266061, Peoples R China
[3] Minist Nat Resources, Key Lab Marine Sci & Numer Modeling, Qingdao 266061, Peoples R China
[4] Huawei Technol Co Ltd, Res Dept, Comp Prod Line, ICT Prod & Solut, Hangzhou 310052, Peoples R China
[5] Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
[6] Shandong Key Lab Marine Sci & Numer Modeling, Qingdao 266061, Peoples R China
[7] Natl Engn Lab Integrated AeroSp Ground Ocean Big D, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Downscaling; Global location -specific transformation; Significant wave height; Deep learning; NAFNet; CLIMATE;
D O I
10.1016/j.seares.2024.102482
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Finer resolution is one of the development trends in ocean surface waves simulation and forecasting. However, high-resolution numerical models for ocean surface waves have led to an enormous increase in computational complexity, posing a challenge with respect to balancing computational efficiency and timeliness. To meet the demand for refined ocean surface waves simulation/forecasting and to address the computational efficiency challenge of high-resolution ocean surface waves models, we propose a downscaling model called the Global location-Specific transformation Downscaling Network (GSDNet) based on the non-autoregressive fusion network (NAFNet). By incorporating global location-specific transformation and introducing a land-sea distribution indicator, GSDNet can quickly and accurately map low-resolution significant wave heights to highresolution grids. The results show that, compared with traditional interpolation methods such as the bilinear, inverse distance weight interpolation (IDW), and bicubic methods, the GSDNet model can reduce the global mean absolute error (MAE) by >77%. Compared with those of FourCastNet (FCN), the Koopman neural operator (KNO), the original NAFNet, and residual networks in deep learning from empirical downscaling methods (DL4DS_ResNet), the MAE decreases by >21%. Furthermore, the GSDNet model outperforms the other downscaling methods at the coastal boundary and for identifying the maximum significant wave height. In this work, we provide an effective solution for balancing computational efficiency and timeliness, which is important for improving the accuracy and reliability of ocean surface waves simulation/forecasting.
引用
收藏
页数:12
相关论文
共 33 条
[1]   Modelling of Deep Learning-Based Downscaling for Wave Forecasting in Coastal Area [J].
Adytia, Didit ;
Saepudin, Deni ;
Tarwidi, Dede ;
Pudjaprasetya, Sri Redjeki ;
Husrin, Semeidi ;
Sopaheluwakan, Ardhasena ;
Prasetya, Gegar .
WATER, 2023, 15 (01)
[2]   A Deep Learning Approach for Wave Forecasting Based on a Spatially Correlated Wind Feature, with a Case Study in the Java']Java Sea, Indonesia [J].
Adytia, Didit ;
Saepudin, Deni ;
Pudjaprasetya, Sri Redjeki ;
Husrin, Semeidi ;
Sopaheluwakan, Ardhasena .
FLUIDS, 2022, 7 (01)
[3]   Configuration and intercomparison of deep learning neural models for statistical downscaling [J].
Bano-Medina, Jorge ;
Manzanas, Rodrigo ;
Manuel Gutierrez, Jose .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (04) :2109-2124
[4]   FIO-ESM Version 2.0: Model Description and Evaluation [J].
Bao, Ying ;
Song, Zhenya ;
Qiao, Fangli .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (06)
[5]   A Multigrid Wave Forecasting Model: A New Paradigm in Operational Wave Forecasting [J].
Chawla, Arun ;
Tolman, Hendrik L. ;
Gerald, Vera ;
Spindler, Deanna ;
Spindler, Todd ;
Alves, Jose-Henrique G. M. ;
Cao, Degui ;
Hanson, Jeffrey L. ;
Devaliere, Eve-Marie .
WEATHER AND FORECASTING, 2013, 28 (04) :1057-1078
[6]   NAFSSR: Stereo Image Super-Resolution Using NAFNet [J].
Chu, Xiaojie ;
Chen, Liangyu ;
Yu, Wenqing .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, :1238-1247
[7]   DL4DS-Deep learning for empirical downscaling [J].
Gomez Gonzalez, Carlos Alberto .
ENVIRONMENTAL DATA SCIENCE, 2023, 2
[8]   The ERA5 global reanalysis [J].
Hersbach, Hans ;
Bell, Bill ;
Berrisford, Paul ;
Hirahara, Shoji ;
Horanyi, Andras ;
Munoz-Sabater, Joaquin ;
Nicolas, Julien ;
Peubey, Carole ;
Radu, Raluca ;
Schepers, Dinand ;
Simmons, Adrian ;
Soci, Cornel ;
Abdalla, Saleh ;
Abellan, Xavier ;
Balsamo, Gianpaolo ;
Bechtold, Peter ;
Biavati, Gionata ;
Bidlot, Jean ;
Bonavita, Massimo ;
De Chiara, Giovanna ;
Dahlgren, Per ;
Dee, Dick ;
Diamantakis, Michail ;
Dragani, Rossana ;
Flemming, Johannes ;
Forbes, Richard ;
Fuentes, Manuel ;
Geer, Alan ;
Haimberger, Leo ;
Healy, Sean ;
Hogan, Robin J. ;
Holm, Elias ;
Janiskova, Marta ;
Keeley, Sarah ;
Laloyaux, Patrick ;
Lopez, Philippe ;
Lupu, Cristina ;
Radnoti, Gabor ;
de Rosnay, Patricia ;
Rozum, Iryna ;
Vamborg, Freja ;
Villaume, Sebastien ;
Thepaut, Jean-Noel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (730) :1999-2049
[9]   Automated regression-based statistical downscaling tool [J].
Hessami, Masoud ;
Gachon, Philippe ;
Ouarda, Taha B. M. J. ;
St-Hilaire, Andre .
ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (06) :813-834
[10]   Statistical downscaling for climate change projections in the Mediterranean region: methods and results [J].
Jacobeit, Jucundus ;
Hertig, Elke ;
Seubert, Stefanie ;
Lutz, Karin .
REGIONAL ENVIRONMENTAL CHANGE, 2014, 14 (05) :1891-1906