Unraveling the New Role of Manganese in Nano and Microstructural Engineering of Ni-Rich Layered Cathode for Advanced Lithium-Ion Batteries

被引:17
作者
Park, Geon-Tae [1 ]
Kim, Su-Bin [1 ]
Yoon, Jung-In [2 ]
Park, Nam-Yung [1 ]
Kim, Myoung-Chan [1 ]
Han, Sang-Mun [1 ]
Kim, Dong-Hwi [1 ]
Kim, Min-Su [1 ]
Sun, Yang-Kook [1 ,2 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Battery Engn, Seoul 04763, South Korea
关键词
Mn doping; nanoscale surface faceting; Ni-rich cathode; structural engineering; twin crystal structure; HIGH-ENERGY; PHASE;
D O I
10.1002/aenm.202400130
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Substantial endeavors are dedicated to advance the electrochemical performance of Ni-rich Li[Ni1-x-yCoxMny]O2 (NCM) and Li[Ni1-x-yCoxAly]O2 (NCA) cathode, with a particular focus on doping, aimed at addressing cycling durability and thermal stability of the cathodes. Mn is widely considered an attractive dopant because of its abundance and considerably lower cost than other dopant candidates. However, despite the long history of research, the role of Mn doping remains poorly understood, confined to the historical level, and associated with crystal structural and chemical aspects. Herein, the role of Mn doping beyond its classical role is redefined, particularly in terms of cathode microstructure. Introducing excess Mn during calcination significantly engineers the nano- and micro-level structural features of the peripheral grains of the Li[Ni0.910Co0.079Al0.011]O2 cathode. The microstructural modification achieved by doping with 4 mol% Mn significantly improves the electrochemical cycling performance of the cathode, extending the capacity retention up to 76.5% after 1000 cycles under fast charging conditions (3 C and 45 degrees C). Hence, by providing an alternative approach to redesign the structural features of the cathode, Mn doping offers a significant step toward the sustainable development of high-performance Ni-rich Li[Ni1-x-y-zCoxMnyAlz]O2 (NCMA) cathodes for next-generation lithium-ion batteries. The rational design of nano and microstructure in Ni-rich layered cathode achieved via introducing an excess amount of Mn during the calcination process provides an alternative approach for redesigning the cathode for the sustainable development of high-performance Ni-rich cathodes for next-generation electric vehicles. image
引用
收藏
页数:12
相关论文
共 46 条
[1]   Crystal shapes and phase equilibria: A common mathematical basis [J].
Cahn, JW ;
Carter, WC .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1996, 27 (06) :1431-1440
[2]   Facile Mn Surface Doping of Ni-Rich Layered Cathode Materials for Lithium Ion Batteries [J].
Cho, Woosuk ;
Lim, Young Jin ;
Lee, Sun-Me ;
Kim, Jong Hwa ;
Song, Jun-Ho ;
Yu, Ji-Sang ;
Kim, Young-Jun ;
Park, Min-Ri .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (45) :38915-38921
[3]   Mitigating Anisotropic Changes in Classical Layered Oxide Materials by Controlled Twin Boundary Defects for Long Cycle Life Li-Ion Batteries [J].
Chung, Hyeseung ;
Li, Yixuan ;
Zhang, Minghao ;
Grenier, Antonin ;
Mejia, Carlos ;
Cheng, Diyi ;
Sayahpour, Baharak ;
Song, Chengyu ;
Shen, Meghan Hannah ;
Huang, Ricky ;
Wu, Erik A. ;
Chapman, Karena W. ;
Kim, Suk Jun ;
Meng, Y. Shirley .
CHEMISTRY OF MATERIALS, 2022, 34 (16) :7302-7312
[4]   Impact of Dopants (Al, Mg, Mn, Co) on the Reactivity of LixNiO2 with the Electrolyte of Li-Ion Batteries [J].
Cormier, Marc M. E. ;
Zhang, Ning ;
Liu, Aaron ;
Li, Hongyang ;
Inglis, Julie ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) :A2826-A2833
[5]   STRUCTURE AND ELECTROCHEMISTRY OF LI1+/-YNIO2 AND A NEW LI2NIO2 PHASE WITH THE NI(OH)2 STRUCTURE [J].
DAHN, JR ;
VONSACKEN, U ;
MICHAL, CA .
SOLID STATE IONICS, 1990, 44 (1-2) :87-97
[6]   Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries [J].
de Biasi, Lea ;
Schwarz, Bjoern ;
Brezesinski, Torsten ;
Hartmann, Pascal ;
Janek, Juergen ;
Ehrenberg, Helmut .
ADVANCED MATERIALS, 2019, 31 (26)
[7]   Effect of Manganese Contamination on the Solid-Electrolyte-Interphase Properties in Li-Ion Batteries [J].
Delacourt, C. ;
Kwong, A. ;
Liu, X. ;
Qiao, R. ;
Yang, W. L. ;
Lu, P. ;
Harris, S. J. ;
Srinivasan, V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) :A1099-A1107
[8]   On the behavior of the LixNiO2 system:: an electrochemical and structural overview [J].
Delmas, C ;
Peres, JP ;
Rougier, A ;
Demourgues, A ;
Weill, F ;
Chadwick, A ;
Broussely, M ;
Perton, F ;
Biensan, P ;
Willmann, P .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :120-125
[9]   Structural characterization of layered LiNi0.85-xMnxCo0.15O2 with x=0, 0.1, 0.2 and 0.4 oxide electrodes for Li batteries [J].
Gu, Yi-Jie ;
Chen, Yun-Bo ;
Liu, Hong-Quan ;
Wang, Yan-Ming ;
Wang, Cui-Ling ;
Wu, Hui-Kang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (30) :7915-7921
[10]   IMPROVED CAPACITY RETENTION IN RECHARGEABLE 4V LITHIUM LITHIUM MANGANESE OXIDE (SPINEL) CELLS [J].
GUMMOW, RJ ;
DEKOCK, A ;
THACKERAY, MM .
SOLID STATE IONICS, 1994, 69 (01) :59-67