Short-Term Load Forecasting in Power System Using CNN-LSTM Neural Network

被引:0
|
作者
Truong Hoang Bao Huy [1 ]
Dieu Ngoc Vo [2 ]
Khai Phuc Nguyen [2 ]
Viet Quoc Huynh [2 ]
Minh Quang Huynh [2 ]
Khoa Hoang Truong [2 ]
机构
[1] Soonchunhyang Univ, Dept Future Convergence Technol, Asan, Chuncheongnam D, South Korea
[2] Vietnam Natl Univ Ho Chi Minh City, Ho Chi Minh City Univ Technol HCMUT, Dept Power Syst, Ho Chi Minh City, Vietnam
来源
2023 ASIA MEETING ON ENVIRONMENT AND ELECTRICAL ENGINEERING, EEE-AM | 2023年
关键词
Short-term load forecasting; CNN-LSTM; Long; Short-Term Memory; Convolutional Neural Networks;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The accurate forecasting of short-term load plays a significant role in power systems operation and planning. This paper suggests a short-term load forecasting model combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The developed CNN-LSTM aims to capture both spatial and temporal dependencies within the load data, leveraging the strengths of both architectures. Simulations are performed using real-world power system load data. Comparative analyses are carried out against standalone CNN and LSTM models. The CNN-LSTM has significantly better forecasting accuracy than other models, showcasing its effectiveness in shortterm load forecasting.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] HYBRID ARTIFICIAL NEURAL NETWORK SYSTEM FOR SHORT-TERM LOAD FORECASTING
    Ilic, Slobodan A.
    Vukmirovic, Srdjan M.
    Erdeljan, Aleksandar M.
    Kulic, Filip J.
    THERMAL SCIENCE, 2012, 16 : S215 - S224
  • [22] CNN-LSTM short-term load forecasting based on the K-Medoids clustering and grid method to extract load curve features
    Ji Y.
    Yan Y.
    He P.
    Liu X.
    Li C.
    Zhao C.
    Fan J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (18): : 81 - 93
  • [23] Short-term Load Forecasting in Power System Based on Wavelet Coefficients and BP Neural Network
    Song, Renjie
    Bian, Yixin
    2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, : 2047 - 2050
  • [24] Power system short-term load forecasting
    Wang, Jingyao
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY (ICMMCT 2017), 2017, 126 : 250 - 253
  • [25] Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer
    Kwon, Bo-Sung
    Park, Rae-Jun
    Song, Kyung-Bin
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (04) : 1501 - 1509
  • [26] Short-term energy load forecasting using recurrent neural network
    Rashid, T
    Kechadi, T
    Huang, BQ
    Proceedings of the Eighth IASTED International Conference on Artificial Intelligence and Soft Computing, 2004, : 276 - 281
  • [27] NEURAL NETWORK BASED SHORT-TERM LOAD FORECASTING
    LU, CN
    WU, HT
    VEMURI, S
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1993, 8 (01) : 336 - 342
  • [28] Neural network design for short-term load forecasting
    Charytoniuk, W
    Chen, MS
    DRPT2000: INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES, PROCEEDINGS, 2000, : 554 - 561
  • [29] Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer
    Bo-Sung Kwon
    Rae-Jun Park
    Kyung-Bin Song
    Journal of Electrical Engineering & Technology, 2020, 15 : 1501 - 1509
  • [30] Short-term power load forecasting based on DQN-LSTM
    Guo, Xifeng
    Jiang, Yuxin
    Li, Lingyan
    Fu, Guojiang
    Yao, Shu
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 855 - 860