Voltage relaxation-based state-of-health estimation of lithium-ion batteries using convolutional neural networks and transfer learning

被引:24
|
作者
Zhang, Shaowen [1 ]
Zhu, Haiping [1 ,3 ]
Wu, Jun [2 ,3 ]
Chen, Zhipeng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 400073, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 400073, Peoples R China
[3] Natl Ctr Technol Innovat Intelligent Design & Nume, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State-of-health; Convolutional neural network; Bayesian optimization; Transfer learning; CAPACITY; MODEL; OPTIMIZATION; DEGRADATION; REGRESSION; SELECTION;
D O I
10.1016/j.est.2023.108579
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Convenient and accurate state-of-health (SOH) estimation of lithium-ion batteries (LIBs) is crucial for the security of energy storage systems. However, it is a challenging task to estimate the SOH of LIB due to complex cycling conditions and limited training data. The inputs of most existing methods cannot always be satisfied under complex cycle conditions, as cycle conditions may change anytime, especially during dynamic discharge processes. Thus, we propose a new end-to-end SOH estimation method based on relaxation voltage that is not dependent on specific cycling conditions. Specifically, the relaxation voltage profiles at the end of fully charging are input to a one-dimensional convolutional neural network (CNN) to estimate SOH directly. Transfer learning is adopted to leverage the source domain knowledge to the target domain to solve the issue of limited data. Moreover, the most promising CNN hyperparameters are determined automatically by the Bayesian optimization algorithm (BOA) during the pre-training and transfer learning. The accuracy and robustness of the proposed method are verified on two publicly available datasets consisting of 121 and 4 commercial cells, respectively, with a real-driving discharge profile. The root-mean-square errors of the proposed method are 0.0128 and 0.0092, respectively, with only 1.5 % and 10 % training data from the two target domains. The method has a high potential for online applications with preferable accuracy and computational performance. Our work highlights the effectiveness and generalizability of the end-to-end LIBs SOH estimation method based on easily accessible relaxation voltage profiles.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
    Ye, Zhuang
    Yu, Jianbo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 3528 - 3543
  • [2] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [3] Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest
    Yang, Niankai
    Song, Ziyou
    Hofmann, Heath
    Sun, Jing
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [4] State-of-health estimation for lithium-ion batteries using relaxation voltage under dynamic conditions
    Ke, Xue
    Hong, Huawei
    Zheng, Peng
    Zhang, Shuling
    Zhu, Lingling
    Li, Zhicheng
    Cai, Jiaxin
    Fan, Peixiao
    Yang, Jun
    Wang, Jun
    Li, Li
    Kuai, Chunguang
    Guo, Yuzheng
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [5] State-of-Health Prediction of Lithium-Ion Batteries Based on Diffusion Model with Transfer Learning
    Luo, Chenqiang
    Zhang, Zhendong
    Zhu, Shunliang
    Li, Yongying
    ENERGIES, 2023, 16 (09)
  • [6] State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis
    Li, Yuanyuan
    Sheng, Hanmin
    Cheng, Yuhua
    Stroe, Daniel-Ioan
    Teodorescu, Remus
    APPLIED ENERGY, 2020, 277
  • [7] Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries
    Bao, Xinyuan
    Chen, Liping
    Lopes, Antonio M.
    Li, Xin
    Xie, Siqiang
    Li, Penghua
    Chen, YangQuan
    ENERGY, 2023, 278
  • [8] Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization
    Dai, Houde
    Wang, Jiaxin
    Huang, Yiyang
    Lai, Yuan
    Zhu, Liqi
    RENEWABLE ENERGY, 2024, 222
  • [9] State of health estimation of lithium-ion batteries based on the constant voltage charging curve
    Wang, Zengkai
    Zeng, Shengkui
    Guo, Jianbin
    Qin, Taichun
    ENERGY, 2019, 167 : 661 - 669
  • [10] A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
    Ren, Zhong
    Du, Changqing
    ENERGY REPORTS, 2023, 9 : 2993 - 3021