Automatic wide area land cover mapping using Sentinel-1 multitemporal data

被引:1
|
作者
Marzi, David [1 ]
Sorriso, Antonietta [1 ]
Gamba, Paolo [1 ]
机构
[1] Univ Pavia, Dept Elect Comp & Biomed Engn, Pavia, Italy
来源
关键词
multitemporal SAR sequences; Sentinel-1; wide area land cover mapping; climate change; random forest; RANDOM FOREST CLASSIFIER; SAR; VEGETATION;
D O I
10.3389/frsen.2023.1148328
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study introduces a methodology for land cover mapping across extensive areas, utilizing multitemporal Sentinel-1 Synthetic Aperture Radar (SAR) data. The objective is to effectively process SAR data to extract spatio-temporal features that encapsulate temporal patterns within various land cover classes. The paper outlines the approach for processing multitemporal SAR data and presents an innovative technique for the selection of training points from an existing Medium Resolution Land Cover (MRLC) map. The methodology was tested across four distinct regions of interest, each spanning 100 x 100 km2, located in Siberia, Italy, Brazil, and Africa. These regions were chosen to evaluate the methodology's applicability in diverse climate environments. The study reports both qualitative and quantitative results, showcasing the validity of the proposed procedure and the potential of SAR data for land cover mapping. The experimental outcomes demonstrate an average increase of 16% in overall accuracy compared to existing global products. The results suggest that the presented approach holds promise for enhancing land cover mapping accuracy, particularly when applied to extensive areas with varying land cover classes and environmental conditions. The ability to leverage multitemporal SAR data for this purpose opens new possibilities for improving global land cover maps and their applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multitemporal Polarimetric SAR Data Fusion for Land Cover Mapping
    Xie Chou
    Shao Yun
    Wan Zi
    Zhang Fengli
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [32] 10-METER RESOLUTION LAND COVER CLASSIFICATION MAPPING USING SENTINEL-1 & 2 AND DYNAMIC WORLD
    Tsutsumida, Narumasa
    Nasahara, Kenlo
    Tadono, Takeo
    Birch, Tanya
    Erickson, Tyler
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2954 - 2957
  • [33] Sentinel-1 Multitemporal SAR Products
    Amitrano, Donato
    Cecinati, Francesca
    Di Martino, Gerardo
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3973 - 3976
  • [34] SINCOHMAP: LAND-COVER AND VEGETATION MAPPING USING MULTI-TEMPORAL SENTINEL-1 INTERFEROMETRIC COHERENCE
    Vicente-Guijalba, F.
    Jacob, A.
    Lopez-Sanchez, J. M.
    Lopez-Martinez, C.
    Duro, J.
    Notarnicola, C.
    Ziolkowski, D.
    Mestre-Quereda, A.
    Pottier, E.
    Mallorqui, J. J.
    Lavalle, M.
    Engdahl, M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6631 - 6634
  • [35] Discrimination of pearl millet in the rainfed agroecosystem using multitemporal sentinel-1 SAR data
    Jugal Kishore Mani
    A. O. Varghese
    G. Sreenivasan
    Ashish Shrivastava
    Proceedings of the Indian National Science Academy, 2024, 90 : 31 - 38
  • [36] Discrimination of pearl millet in the rainfed agroecosystem using multitemporal sentinel-1 SAR data
    Mani, Jugal Kishore
    Varghese, A. O.
    Sreenivasan, G.
    Shrivastava, Ashish
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2024, 90 (01): : 31 - 38
  • [37] OmbriaNet-Supervised Flood Mapping via Convolutional Neural Networks Using Multitemporal Sentinel-1 and Sentinel-2 Data Fusion
    Drakonakis, Georgios, I
    Tsagkatakis, Grigorios
    Fotiadou, Konstantina
    Tsakalides, Panagiotis
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2341 - 2356
  • [38] Integrating Multiresolution and Multitemporal Sentinel-2 Imagery for Land-Cover Mapping in the Xiongan New Area, China
    Luo, Xin
    Tong, Xiaohua
    Pan, Haiyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1029 - 1040
  • [39] CHANGE ANALYSIS USING MULTITEMPORAL SENTINEL-1 SAR IMAGES
    Thu Trang Le
    Atto, Abdourrahmane M.
    Trouve, Emmanuel
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4145 - 4148
  • [40] LAND COVER CHANGE MAPPING USING A COMBINATION OF SENTINEL-1 DATA AND MULTISPECTRAL SATELLITE IMAGERY: A CASE STUDY OF SANANDAJ COUNTY, KURDISTAN, IRAN
    Tien Bui, D.
    Shahabi, H.
    Mohammadi, A.
    Bin Ahmad, B.
    Bin Jamal, M. H.
    Mohamed, Noor R. B.
    Ahmadi, M.
    Shirzadi, A.
    Rahmani, H.
    Pham, B. T.
    Ahmad, A.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (03): : 5449 - 5463