Tempered fractional diffusion in comb-like structures with numerical investigation

被引:0
|
作者
Hefny, Mohamed Mokhtar [1 ]
Tawfik, Ashraf M. [2 ]
机构
[1] Future Univ Egypt, Fac Engn & Technol, Engn Math & Phys Dept, Cairo 11835, Egypt
[2] Mansoura Univ, Fac Sci, Phys Dept, Theoret Phys Res Grp, Mansoura 35516, Egypt
关键词
anomalous diffusion; fractional diffusion; numerical simulation; ANOMALOUS DIFFUSION; HETEROGENEOUS MEDIA; TRANSPORT; EQUATION; MODEL; SLOW;
D O I
10.1088/1402-4896/ad0d6b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents two models for describing anomalous transport in comb-like structures. First, we analytically solve the tempered fractional diffusion model using the Laplace-Fourier technique. The probability distributions along the backbone (x-axis) and branches (y-axis) are represented by the M-Wright and Fox's H functions. The probability distributions are illustrated according to the order of the time-fractional derivative alpha and the so-called tempered parameter lambda. Additionally, we determine the mean square displacement to classify the degree of diffusivity in the comb structure based on the values of the time-fractional and tempered orders. Second, we introduce a power-law time-dependent diffusion coefficient as an extension of the comb-like models and investigate the solution of via numerical simulation. Then, we explore the connection between the presence of a time-dependent diffusion coefficient and anomalous transport based on the particle density and mean square displacement.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] SCALING PROPERTIES OF DIFFUSION ON COMB-LIKE STRUCTURES
    MATAN, O
    HAVLIN, S
    STAUFFER, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14): : 2867 - 2869
  • [2] Modeling multiple anomalous diffusion behaviors on comb-like structures
    Wang, Zhaoyang
    Lin, Ping
    Wang, Erhui
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [3] ANALYTIC STUDY OF A MODEL OF DIFFUSION ON RANDOM COMB-LIKE STRUCTURES
    POTTIER, N
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, 16 (08): : 1223 - 1230
  • [4] Biased diffusion in three-dimensional comb-like structures
    Berezhkovskii, Alexander M.
    Dagdug, Leonardo
    Bezrukov, Sergey M.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (13):
  • [5] Fractional (space-time) diffusion equation on comb-like model
    Elwakil, SA
    Zahran, MA
    Abulwafa, EM
    CHAOS SOLITONS & FRACTALS, 2004, 20 (05) : 1113 - 1120
  • [6] USE OF COMB-LIKE MODELS TO MIMIC ANOMALOUS DIFFUSION ON FRACTAL STRUCTURES
    WEISS, GH
    HAVLIN, S
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06): : 941 - 947
  • [7] From normal to anomalous diffusion in comb-like structures in three dimensions
    Berezhkovskii, Alexander M.
    Dagdug, Leonardo
    Bezrukov, Sergey M.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (05):
  • [8] USE OF COMB-LIKE MODELS TO MIMIC ANOMALOUS DIFFUSION ON FRACTAL STRUCTURES.
    Weiss, George H.
    Havlin, Shlomo
    Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1987, 56 (06): : 941 - 947
  • [9] DIFFUSION ON RANDOM COMB-LIKE STRUCTURES - FIELD-INDUCED TRAPPING EFFECTS
    POTTIER, N
    PHYSICA A, 1995, 216 (1-2): : 1 - 19
  • [10] ANOMALOUS DIFFUSION ON A RANDOM COMB-LIKE STRUCTURE
    HAVLIN, S
    KIEFER, JE
    WEISS, GH
    PHYSICAL REVIEW A, 1987, 36 (03): : 1403 - 1408