Artificial intelligence in diabetes management: Advancements, opportunities, and challenges

被引:100
作者
Guan, Zhouyu [1 ]
Li, Huating [1 ]
Liu, Ruhan [1 ,2 ,3 ]
Cai, Chun [1 ]
Liu, Yuexing [1 ]
Li, Jiajia [1 ,2 ]
Wang, Xiangning [4 ]
Huang, Shan [1 ,2 ]
Wu, Liang [1 ]
Liu, Dan [1 ]
Yu, Shujie [1 ]
Wang, Zheyuan [1 ,2 ]
Shu, Jia [1 ,2 ]
Hou, Xuhong [1 ]
Yang, Xiaokang [2 ]
Jia, Weiping [1 ]
Sheng, Bin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med 6, Shanghai Peoples Hosp, Shanghai Clin Ctr Diabet,Shanghai Int Joint Lab In, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, MOE Key Lab AI, Shanghai 200240, Peoples R China
[3] Natl Engn Res Ctr Personalized Diagnost & Therapeu, Furong Lab, Changsha, Hunan, Peoples R China
[4] Shanghai Jiao Tong Univ, Affiliated Peoples Hosp 6, Dept Ophthalmol, Shanghai 200233, Peoples R China
关键词
DEEP LEARNING ALGORITHM; CHRONIC KIDNEY-DISEASE; NEURAL-NETWORK; RISK-FACTORS; RETINOPATHY; MELLITUS; PREDICTION; CLASSIFICATION; TECHNOLOGY; MODEL;
D O I
10.1016/j.xcrm.2023.101213
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The increasing prevalence of diabetes, high avoidable morbidity and mortality due to diabetes and diabetic complications, and related substantial economic burden make diabetes a significant health challenge world-wide. A shortage of diabetes specialists, uneven distribution of medical resources, low adherence to medi-cations, and improper self-management contribute to poor glycemic control in patients with diabetes. Recent advancements in digital health technologies, especially artificial intelligence (AI), provide a significant opportunity to achieve better efficiency in diabetes care, which may diminish the increase in diabetes-related health-care expenditures. Here, we review the recent progress in the application of AI in the management of diabetes and then discuss the opportunities and challenges of AI application in clinical practice. Furthermore, we explore the possibility of combining and expanding upon existing digital health technologies to develop an AI-assisted digital health-care ecosystem that includes the prevention and management of diabetes.
引用
收藏
页数:20
相关论文
共 149 条
[1]   Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study [J].
Abbasi, Ali ;
Peelen, Linda M. ;
Corpeleijn, Eva ;
van der Schouw, Yvonne T. ;
Stolk, Ronald P. ;
Spijkerman, Annemieke M. W. ;
van der A, Daphne L. ;
Moons, Karel G. M. ;
Navis, Gerjan ;
Bakker, Stephan J. L. ;
Beulens, Joline W. J. .
BMJ-BRITISH MEDICAL JOURNAL, 2012, 345
[2]   Artificial Intelligence Applications in Type 2 Diabetes Mellitus Care: Focus on Machine Learning Methods [J].
Abhari, Shahabeddin ;
Kalhori, Sharareh R. Niakan ;
Ebrahimi, Mehdi ;
Hasannejadasl, Hajar ;
Garavand, Ali .
HEALTHCARE INFORMATICS RESEARCH, 2019, 25 (04) :248-261
[3]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[4]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[5]   Computer-based detection of diabetes retinopathy stages using digital fundus images [J].
Acharya, U. R. ;
Lim, C. M. ;
Ng, E. Y. K. ;
Chee, C. ;
Tamura, T. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2009, 223 (H5) :545-553
[6]  
2023, Arxiv, DOI [arXiv:2303.08774, DOI 10.48550/ARXIV.2303.08774]
[7]   Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables [J].
Ahlqvist, Emma ;
Storm, Petter ;
Karajamaki, Annemari ;
Martinell, Mats ;
Dorkhan, Mozhgan ;
Carlsson, Annelie ;
Vikman, Petter ;
Prasad, Rashmi B. ;
Aly, Dina Mansour ;
Almgren, Peter ;
Wessman, Ylva ;
Shaat, Nael ;
Spegel, Peter ;
Mulder, Hindrik ;
Lindholm, Eero ;
Melander, Olle ;
Hansson, Ola ;
Malmqvist, Ulf ;
Lernmark, Ake ;
Lahti, Kaj ;
Forsen, Tom ;
Tuomi, Tiinamaija ;
Rosengren, Anders H. ;
Groop, Leif .
LANCET DIABETES & ENDOCRINOLOGY, 2018, 6 (05) :361-369
[8]  
Albu A., 2015, Benefits of Using Artificial Intelligence in Medical Predictions19-21, P1
[9]   Using ChatGPT to write patient clinic letters [J].
Ali, Stephen R. ;
Dobbs, Thomas D. ;
Hutchings, Hayley A. ;
Whitaker, Iain S. .
LANCET, 2023, 5 (04) :E179-E181
[10]   A Predictive Metabolic Signature for the Transition From Gestational Diabetes Mellitus to Type 2 Diabetes [J].
Allalou, Amina ;
Nalla, Amarnadh ;
Prentice, Kacey J. ;
Liu, Ying ;
Zhang, Ming ;
Dai, Feihan F. ;
Ning, Xian ;
Osborne, Lucy R. ;
Cox, Brian J. ;
Gunderson, Erica P. ;
Wheeler, Michael B. .
DIABETES, 2016, 65 (09) :2529-2539