Generalized Cartesian decomposition and numerical radius inequalities

被引:4
|
作者
Bhunia, Pintu [2 ]
Sen, Anirban [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Numerical radius; Usual operator norm; Bounded linear operator; Inequality; OPERATORS; ZEROS; NORM;
D O I
10.1007/s12215-023-00958-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T = {lambda is an element of C :| lambda |= 1}. Every linear operator T on a complex Hilbert space H can be decomposed as T = T + lambda T*/2 + i T - lambda T*/2i (lambda is an element of T), designated as the generalized Cartesian decomposition of T. Using the generalized Cartesian decompositionwe obtain several lower and upper bounds for the numerical radius of bounded linear operators which refine the existing bounds. We prove that if T is a bounded linear operator on H, then w(T) >= 1/2 ||T + lambda + mu/2 T*||, for all lambda, mu is an element of T. This improves the existing bounds w(T) >= 1/2 ||T||, w(T) >= ||Re(T)||, w(T) >= ||Im(T)|| and so w(2)(T) >= 1/4 ||T*T + TT*||, where Re(T) and Im(T) denote the the real part and the imaginary part of T, respectively. Further, using a lower bound for the numerical radius of a bounded linear operator, we develop upper bounds for the numerical radius of the commutator of operators which generalize and improve on the existing ones.
引用
收藏
页码:887 / 897
页数:11
相关论文
共 50 条
  • [41] On Some Numerical Radius Inequalities Involving Generalized Aluthge Transform
    Hyder, Javariya
    Akram, Muhammad Saeed
    Alofi, Abdulaziz S.
    Akter, Dilruba
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [42] Some generalized numerical radius inequalities involving Kwong functions
    Bakherad, Mojtaba
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (04): : 951 - 958
  • [43] Numerical Radius Inequalities for Products of Hilbert Space Operators
    Hosseini, M. Shah
    Moosavi, B.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (12)
  • [44] Development of inequalities and characterization of equality conditions for the numerical radius
    Bhunia, Pintu
    Paul, Kallol
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 : 306 - 315
  • [45] Some Inequalities for the Numerical Radius of Hilbert Space Operators
    Gao, Fugen
    Hu, Yijuan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)
  • [46] Furtherance of numerical radius inequalities of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    ARCHIV DER MATHEMATIK, 2021, 117 (05) : 537 - 546
  • [47] Furtherance of numerical radius inequalities of Hilbert space operators
    Pintu Bhunia
    Kallol Paul
    Archiv der Mathematik, 2021, 117 : 537 - 546
  • [48] Interpolating numerical radius inequalities for matrices
    Ahmad Al-Natoor
    Omar Hirzallah
    Fuad Kittaneh
    Advances in Operator Theory, 2024, 9
  • [49] Further Accurate Numerical Radius Inequalities
    Qawasmeh, Tariq
    Qazza, Ahmad
    Hatamleh, Raed
    Alomari, Mohammad W.
    Saadeh, Rania
    AXIOMS, 2023, 12 (08)
  • [50] On Numerical Radius Inequalities for Operator Matrices
    Guelfen, Hanane
    Kittaneh, Fuad
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (11) : 1231 - 1241