Generalized Cartesian decomposition and numerical radius inequalities

被引:5
作者
Bhunia, Pintu [2 ]
Sen, Anirban [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Numerical radius; Usual operator norm; Bounded linear operator; Inequality; OPERATORS; ZEROS; NORM;
D O I
10.1007/s12215-023-00958-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T = {lambda is an element of C :| lambda |= 1}. Every linear operator T on a complex Hilbert space H can be decomposed as T = T + lambda T*/2 + i T - lambda T*/2i (lambda is an element of T), designated as the generalized Cartesian decomposition of T. Using the generalized Cartesian decompositionwe obtain several lower and upper bounds for the numerical radius of bounded linear operators which refine the existing bounds. We prove that if T is a bounded linear operator on H, then w(T) >= 1/2 ||T + lambda + mu/2 T*||, for all lambda, mu is an element of T. This improves the existing bounds w(T) >= 1/2 ||T||, w(T) >= ||Re(T)||, w(T) >= ||Im(T)|| and so w(2)(T) >= 1/4 ||T*T + TT*||, where Re(T) and Im(T) denote the the real part and the imaginary part of T, respectively. Further, using a lower bound for the numerical radius of a bounded linear operator, we develop upper bounds for the numerical radius of the commutator of operators which generalize and improve on the existing ones.
引用
收藏
页码:887 / 897
页数:11
相关论文
共 26 条
[1]   A generalization of the numerical radius [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 :323-334
[2]   BOUNDS OF NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS USING t-ALUTHGE TRANSFORM [J].
Bag, Santanu ;
Bhunia, Pintu ;
Paul, Kallol .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03) :991-1004
[3]   Norm inequalities for positive operators [J].
Bhatia, R ;
Kittaneh, F .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (03) :225-231
[4]  
Bhunia P., 2022, Infosys Science Foundation Series in Mathematical Sciences
[5]   Numerical radius inequalities of sectorial matrices [J].
Bhunia, Pintu ;
Paul, Kallol ;
Sen, Anirban .
ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (03)
[6]   Generalized A-Numerical Radius of Operators and Related Inequalities [J].
Bhunia, Pintu ;
Feki, Kais ;
Paul, Kallol .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) :3883-3907
[7]   Estimations of Zeros of a Polynomial Using Numerical Radius Inequalities [J].
Bhunia, Pintu ;
Bag, Santanu ;
Nayak, Raj Kumar ;
Paul, Kallol .
KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04) :845-858
[8]   Development of inequalities and characterization of equality conditions for the numerical radius [J].
Bhunia, Pintu ;
Paul, Kallol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 :306-315
[9]   REFINEMENTS OF NORM AND NUMERICAL RADIUS INEQUALITIES [J].
Bhunia, Pintu ;
Paul, Kallol .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) :1953-1965
[10]   Proper Improvement of Well-Known Numerical Radius Inequalities and Their Applications [J].
Bhunia, Pintu ;
Paul, Kallol .
RESULTS IN MATHEMATICS, 2021, 76 (04)