Mixed phase ZnSnN2 thin films for solar energy applications: Insight into optical and electrical properties

被引:4
作者
Nezhdanov, A. [1 ]
Skrylev, A. [1 ]
Shestakov, D. [1 ]
Usanov, D. [2 ]
Fukina, D. [1 ]
Malyshev, A. [1 ]
De Filpo, G. [3 ]
Mashin, A. [1 ]
机构
[1] Lobachevsky State Univ Nizhniy Novgorod, 23 Gagarin Ave, Nizhnii Novgorod 603950, Russia
[2] Paul Scherrer Inst, Spect Quantum Mat Grp, Forschungsstr 111, CH-5232 Villigen, Switzerland
[3] Univ Calabria, Dipartimento Chim & Tecnol Chim CTC, I-87036 Arcavacata Di Rende, Cosenza, Italy
关键词
Zinc tin nitride; Raman spectroscopy; X-ray diffraction; Optical band gap; Conductivity type; Carrier density; Burstein-Moss effect; Disordered cation sublattice; Solar cell; PHOTOLUMINESCENCE; MECHANISM; MOBILITY;
D O I
10.1016/j.optmat.2023.114335
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Zinc tin nitride (ZnSnN2, ZTN) films synthesized by magnetron co-sputtering at a temperature close to the ZTN decomposition point and with the cation ratio close to stoichiometric have been studied to gain insight into their structural, optical and electrical properties. According to X-ray diffraction and Raman spectroscopy, the samples are polycrystalline with some disorder in the cation sublattice. Hall effect measurements reveal n-type conductivity and very high carrier density above 10(19) cm(-3). At the lowest carrier density, the mobility achieves the best value similar to 19 cm(2)/(V*s), which is acceptable for device applications. The optical band gap shows a blue shift with increasing electron density, which is related to the increase in tin content and the Burstein-Moss effect. Analysis of the blue shift in terms of the Burstein-Moss effect theory gives a value of 1.43 eV for the intrinsic band gap of ZTN in the mixed-phase state.
引用
收藏
页数:7
相关论文
共 39 条
  • [1] Structural and functional properties of Zn(Ge,Sn)N2 thin films deposited by reactive sputtering
    Beddelem, Nicole
    Bruyere, Stephanie
    Cleymand, Franck
    Diliberto, Sebastien
    Longeaud, Christophe
    le Gall, Sylvain
    Templier, Roselyne
    Miska, Patrice
    Hyot, Berangere
    [J]. THIN SOLID FILMS, 2020, 709
  • [2] Tuning the photoluminescence, conduction mechanism and scattering mechanism of ZnSnN2
    Cai, Xing-Min
    Wang, Bo
    Ye, Fan
    Vaithinathan, Karthikeyan
    Zeng, Jun-Jie
    Zhang, Dong-Ping
    Fan, Ping
    Roy, V. A. L.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 779 : 237 - 243
  • [3] Conduction-band effective mass and bandgap of ZnSnN2 earth-abundant solar absorber
    Cao, Xiang
    Kawamura, Fumio
    Ninomiya, Yoshihiko
    Taniguchi, Takashi
    Yamada, Naoomi
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [4] Phase Stability and Defect Physics of a Ternary ZnSnN2 Semiconductor: First Principles Insights
    Chen, Shiyou
    Narang, Prineha
    Atwater, Harry A.
    Wang, Lin-Wang
    [J]. ADVANCED MATERIALS, 2014, 26 (02) : 311 - 315
  • [5] Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers
    Chen, Wei
    Wu, Yongzhen
    Yue, Youfeng
    Liu, Jian
    Zhang, Wenjun
    Yang, Xudong
    Chen, Han
    Bi, Enbing
    Ashraful, Islam
    Graetzel, Michael
    Han, Liyuan
    [J]. SCIENCE, 2015, 350 (6263) : 944 - 948
  • [6] Tailoring optoelectronic properties of earth abundant ZnSnN2 by combinatorial RF magnetron sputtering
    Chinnakutti, Karthik Kumar
    Panneerselvam, Vengatesh
    Salammal, Shyju Thankaraj
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 772 : 348 - 358
  • [7] DISORDER AND THE OPTICAL-ABSORPTION EDGE OF HYDROGENATED AMORPHOUS-SILICON
    CODY, GD
    TIEDJE, T
    ABELES, B
    MOUSTAKAS, TD
    BROOKS, B
    GOLDSTEIN, Y
    [J]. JOURNAL DE PHYSIQUE, 1981, 42 (NC4): : 301 - 304
  • [8] Determination of the basic optical parameters of ZnSnN2
    Deng, Fuling
    Cao, Hongtao
    Liang, Lingyan
    Li, Jun
    Gao, Junhua
    Zhang, Hongliang
    Qin, Ruifeng
    Liu, Caichi
    [J]. OPTICS LETTERS, 2015, 40 (07) : 1282 - 1285
  • [9] Dinnebier RE, 2008, POWDER DIFFRACTION: THEORY AND PRACTICE, P1, DOI 10.1039/9781847558237-00001
  • [10] Gil B., 1998, Group III Nitride Semiconductor Compounds Physics and Applications, P70