A self-circulating pathway for the oxygen evolution reaction

被引:36
作者
Deng, Bohan [1 ]
Yu, Guangqiang [2 ]
Zhao, Wei [1 ]
Long, Yuanzheng [1 ]
Yang, Cheng [1 ]
Du, Peng [3 ,4 ]
He, Xian [3 ,4 ]
Zhang, Zhuting [1 ]
Huang, Kai [3 ,4 ]
Li, Xibo [2 ]
Wu, Hui [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Jinan Univ, Siyuan Lab,Dept Phys, Guangzhou Key Lab Vacuum Coating Technol & New En, Guangdong Prov Engn Technol Res Ctr Vacuum Coatin, Guangzhou 510632, Guangdong, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL EVOLUTION; OXIDE CATALYSTS; ACTIVE-SITE; NI FOAM; WATER; RAMAN; OXIDATION; ELECTROCATALYSIS; RECONSTRUCTION; SPECTROSCOPY;
D O I
10.1039/d3ee02360e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The oxygen evolution reaction (OER) suffers from the sluggish kinetics of traditional four-electron-transfer pathways (4e--OER). Herein, we propose a self-circulating electrochemical-thermal OER mechanism (SET-OER) as a new pathway for high-efficiency water oxidation. The SET-OER couples two consecutive reactions in the anode: (i) one-electron electrochemical oxidation of Ni(OH)2 to generate NiOOH and (ii) in situ thermal decomposition of NiOOH to release O2 and recover Ni(OH)2. Compared with the traditional 4e--OER, the SET-OER significantly reduces the potential for water oxidation to only 1.25 V vs. RHE at 10 mA cm-2 at 120 degrees C. The different dominant mechanisms as the temperature changes are discussed based on our experimental results and density functional theory calculations. This work provides new insights for the understanding of the OER process at high temperatures. The self-circulation between Ni(OH)2 and NiOOH during water oxidation significantly lowers the overpotential of the oxygen evolution reaction (OER).
引用
收藏
页码:5210 / 5219
页数:10
相关论文
共 69 条
  • [41] Boosting the Electrocatalytic Water Oxidation Performance of CoFe2O4 Nanoparticles by Surface Defect Engineering
    Ou, Gang
    Wu, Fengchi
    Huang, Kai
    Hussain, Naveed
    Zu, Di
    Wei, Hehe
    Ge, Binghui
    Yao, Huizhen
    Liu, Lai
    Li, Henan
    Shi, Yumeng
    Wu, Hui
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) : 3978 - 3983
  • [42] Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation
    Pan, Yangli
    Xu, Xiaomin
    Zhong, Yijun
    Ge, Lei
    Chen, Yubo
    Veder, Jean-Pierre Marcel
    Guan, Daqin
    O'Hayre, Ryan
    Li, Mengran
    Wang, Guoxiong
    Wang, Hao
    Zhou, Wei
    Shao, Zongping
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [43] Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting
    Qiu, Zhen
    Tai, Cheuk-Wai
    Niklasson, Gunnar A.
    Edvinsson, Tomas
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) : 572 - 581
  • [44] Why Do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting?
    Rajan, Ananth Govind
    Martirez, John Mark P.
    Carter, Emily A.
    [J]. ACS CATALYSIS, 2020, 10 (19) : 11177 - 11234
  • [45] Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials
    Rajan, Ananth Govind
    Martirez, John Mark P.
    Carter, Emily A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (07) : 3600 - 3612
  • [46] Electrolysis of water on oxide surfaces
    Rossmeisl, J.
    Qu, Z.-W.
    Zhu, H.
    Kroes, G.-J.
    Norskov, J. K.
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2007, 607 (1-2) : 83 - 89
  • [47] Surface electronic structure and reactivity of transition and noble metals
    Ruban, A
    Hammer, B
    Stoltze, P
    Skriver, HL
    Norskov, JK
    [J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 1997, 115 (03) : 421 - 429
  • [48] Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites
    She, Sixuan
    Zhu, Yinlong
    Chen, Yubo
    Lu, Qian
    Zhou, Wei
    Shao, Zongping
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (20)
  • [49] A review on fundamentals for designing oxygen evolution electrocatalysts
    Song, Jiajia
    Wei, Chao
    Huang, Zhen-Feng
    Liu, Chuntai
    Zeng, Lin
    Wang, Xin
    Xu, Zhichuan J.
    [J]. CHEMICAL SOCIETY REVIEWS, 2020, 49 (07) : 2196 - 2214
  • [50] A-Site Management Prompts the Dynamic Reconstructed Active Phase of Perovskite Oxide OER Catalysts
    Sun, Yu
    Li, Ran
    Chen, Xiaoxuan
    Wu, Jing
    Xie, Yong
    Wang, Xin
    Ma, Kaikai
    Wang, Li
    Zhang, Zheng
    Liao, Qingliang
    Kang, Zhuo
    Zhang, Yue
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (12)