A self-circulating pathway for the oxygen evolution reaction

被引:52
作者
Deng, Bohan [1 ]
Yu, Guangqiang [2 ]
Zhao, Wei [1 ]
Long, Yuanzheng [1 ]
Yang, Cheng [1 ]
Du, Peng [3 ,4 ]
He, Xian [3 ,4 ]
Zhang, Zhuting [1 ]
Huang, Kai [3 ,4 ]
Li, Xibo [2 ]
Wu, Hui [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Jinan Univ, Siyuan Lab,Dept Phys, Guangzhou Key Lab Vacuum Coating Technol & New En, Guangdong Prov Engn Technol Res Ctr Vacuum Coatin, Guangzhou 510632, Guangdong, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL EVOLUTION; OXIDE CATALYSTS; ACTIVE-SITE; NI FOAM; WATER; RAMAN; OXIDATION; ELECTROCATALYSIS; RECONSTRUCTION; SPECTROSCOPY;
D O I
10.1039/d3ee02360e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The oxygen evolution reaction (OER) suffers from the sluggish kinetics of traditional four-electron-transfer pathways (4e--OER). Herein, we propose a self-circulating electrochemical-thermal OER mechanism (SET-OER) as a new pathway for high-efficiency water oxidation. The SET-OER couples two consecutive reactions in the anode: (i) one-electron electrochemical oxidation of Ni(OH)2 to generate NiOOH and (ii) in situ thermal decomposition of NiOOH to release O2 and recover Ni(OH)2. Compared with the traditional 4e--OER, the SET-OER significantly reduces the potential for water oxidation to only 1.25 V vs. RHE at 10 mA cm-2 at 120 degrees C. The different dominant mechanisms as the temperature changes are discussed based on our experimental results and density functional theory calculations. This work provides new insights for the understanding of the OER process at high temperatures. The self-circulation between Ni(OH)2 and NiOOH during water oxidation significantly lowers the overpotential of the oxygen evolution reaction (OER).
引用
收藏
页码:5210 / 5219
页数:10
相关论文
共 69 条
[1]   Electrical conductivity measurements of aqueous and immobilized potassium hydroxide [J].
Allebrod, Frank ;
Chatzichristodoulou, Christodoulos ;
Mollerup, Pia Lolk ;
Mogensen, Mogens Bjerg .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (21) :16505-16514
[2]   Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water [J].
Bajdich, Michal ;
Garcia-Mota, Monica ;
Vojvodic, Aleksandra ;
Norskov, Jens K. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) :13521-13530
[3]   Ultrathin Ni(0)-Embedded Ni(OH)2 Heterostructured Nanosheets with Enhanced Electrochemical Overall Water Splitting [J].
Dai, Lei ;
Chen, Zhe-Ning ;
Li, Liuxiao ;
Yin, Peiqun ;
Liu, Zhengqing ;
Zhang, Hua .
ADVANCED MATERIALS, 2020, 32 (08)
[4]   The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation [J].
Diaz-Morales, Oscar ;
Ferrus-Suspedra, David ;
Koper, Marc T. M. .
CHEMICAL SCIENCE, 2016, 7 (04) :2639-2645
[5]   Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting [J].
Dotan, Hen ;
Landman, Avigail ;
Sheehan, Stafford W. ;
Malviya, Kirtiman Deo ;
Shter, Gennady E. ;
Grave, Daniel A. ;
Arzi, Ziv ;
Yehudai, Nachshon ;
Halabi, Manar ;
Gal, Netta ;
Hadari, Noam ;
Cohen, Coral ;
Rothschild, Avner ;
Grader, Gideon S. .
NATURE ENERGY, 2019, 4 (09) :786-795
[6]   An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base [J].
Doyle, Richard L. ;
Lyons, Michael E. G. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (14) :5224-5237
[7]   Ni/NiO nanosheets for alkaline hydrogen evolution reaction: In situ electrochemical-Raman study [J].
Faid, Alaa Y. ;
Barnett, Alejandro Oyarce ;
Seland, Frode ;
Sunde, Svein .
ELECTROCHIMICA ACTA, 2020, 361
[8]   From Theory to Experiment: Cascading of Thermocatalysis and Electrolysis in Oxygen Evolution Reactions [J].
Fan, Xing ;
Tan, Siyu ;
Yang, Junjun ;
Liu, Yunxia ;
Bian, Wenyi ;
Liao, Fan ;
Lin, Haiping ;
Li, Youyong .
ACS ENERGY LETTERS, 2022, 7 (01) :343-348
[9]   Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution [J].
Feng, Chen ;
Zhang, Zhirong ;
Wang, Dongdi ;
Kong, Yuan ;
Wei, Jie ;
Wang, Ruyang ;
Ma, Peiyu ;
Li, Hongliang ;
Geng, Zhigang ;
Zuo, Ming ;
Bao, Jun ;
Zhou, Shiming ;
Zeng, Jie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (21) :9271-9279
[10]   Highly Efficient Oxygen Evolution by a Thermocatalytic Process Cascaded Electrocatalysis Over Sulfur-Treated Fe-Based Metal-Organic-Frameworks [J].
Feng, Kun ;
Zhang, Duo ;
Liu, Fangfang ;
Li, Hui ;
Xu, Jiabin ;
Xia, Yujian ;
Li, Youyong ;
Lin, Haiping ;
Wang, Shuao ;
Shao, Mingwang ;
Kang, Zhenhui ;
Zhong, Jun .
ADVANCED ENERGY MATERIALS, 2020, 10 (16)