A self-circulating pathway for the oxygen evolution reaction

被引:36
作者
Deng, Bohan [1 ]
Yu, Guangqiang [2 ]
Zhao, Wei [1 ]
Long, Yuanzheng [1 ]
Yang, Cheng [1 ]
Du, Peng [3 ,4 ]
He, Xian [3 ,4 ]
Zhang, Zhuting [1 ]
Huang, Kai [3 ,4 ]
Li, Xibo [2 ]
Wu, Hui [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Jinan Univ, Siyuan Lab,Dept Phys, Guangzhou Key Lab Vacuum Coating Technol & New En, Guangdong Prov Engn Technol Res Ctr Vacuum Coatin, Guangzhou 510632, Guangdong, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL EVOLUTION; OXIDE CATALYSTS; ACTIVE-SITE; NI FOAM; WATER; RAMAN; OXIDATION; ELECTROCATALYSIS; RECONSTRUCTION; SPECTROSCOPY;
D O I
10.1039/d3ee02360e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The oxygen evolution reaction (OER) suffers from the sluggish kinetics of traditional four-electron-transfer pathways (4e--OER). Herein, we propose a self-circulating electrochemical-thermal OER mechanism (SET-OER) as a new pathway for high-efficiency water oxidation. The SET-OER couples two consecutive reactions in the anode: (i) one-electron electrochemical oxidation of Ni(OH)2 to generate NiOOH and (ii) in situ thermal decomposition of NiOOH to release O2 and recover Ni(OH)2. Compared with the traditional 4e--OER, the SET-OER significantly reduces the potential for water oxidation to only 1.25 V vs. RHE at 10 mA cm-2 at 120 degrees C. The different dominant mechanisms as the temperature changes are discussed based on our experimental results and density functional theory calculations. This work provides new insights for the understanding of the OER process at high temperatures. The self-circulation between Ni(OH)2 and NiOOH during water oxidation significantly lowers the overpotential of the oxygen evolution reaction (OER).
引用
收藏
页码:5210 / 5219
页数:10
相关论文
共 69 条
  • [1] Electrical conductivity measurements of aqueous and immobilized potassium hydroxide
    Allebrod, Frank
    Chatzichristodoulou, Christodoulos
    Mollerup, Pia Lolk
    Mogensen, Mogens Bjerg
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (21) : 16505 - 16514
  • [2] Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water
    Bajdich, Michal
    Garcia-Mota, Monica
    Vojvodic, Aleksandra
    Norskov, Jens K.
    Bell, Alexis T.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) : 13521 - 13530
  • [3] Ultrathin Ni(0)-Embedded Ni(OH)2 Heterostructured Nanosheets with Enhanced Electrochemical Overall Water Splitting
    Dai, Lei
    Chen, Zhe-Ning
    Li, Liuxiao
    Yin, Peiqun
    Liu, Zhengqing
    Zhang, Hua
    [J]. ADVANCED MATERIALS, 2020, 32 (08)
  • [4] The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation
    Diaz-Morales, Oscar
    Ferrus-Suspedra, David
    Koper, Marc T. M.
    [J]. CHEMICAL SCIENCE, 2016, 7 (04) : 2639 - 2645
  • [5] Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting
    Dotan, Hen
    Landman, Avigail
    Sheehan, Stafford W.
    Malviya, Kirtiman Deo
    Shter, Gennady E.
    Grave, Daniel A.
    Arzi, Ziv
    Yehudai, Nachshon
    Halabi, Manar
    Gal, Netta
    Hadari, Noam
    Cohen, Coral
    Rothschild, Avner
    Grader, Gideon S.
    [J]. NATURE ENERGY, 2019, 4 (09) : 786 - 795
  • [6] An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base
    Doyle, Richard L.
    Lyons, Michael E. G.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (14) : 5224 - 5237
  • [7] Ni/NiO nanosheets for alkaline hydrogen evolution reaction: In situ electrochemical-Raman study
    Faid, Alaa Y.
    Barnett, Alejandro Oyarce
    Seland, Frode
    Sunde, Svein
    [J]. ELECTROCHIMICA ACTA, 2020, 361
  • [8] From Theory to Experiment: Cascading of Thermocatalysis and Electrolysis in Oxygen Evolution Reactions
    Fan, Xing
    Tan, Siyu
    Yang, Junjun
    Liu, Yunxia
    Bian, Wenyi
    Liao, Fan
    Lin, Haiping
    Li, Youyong
    [J]. ACS ENERGY LETTERS, 2022, 7 (01): : 343 - 348
  • [9] Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution
    Feng, Chen
    Zhang, Zhirong
    Wang, Dongdi
    Kong, Yuan
    Wei, Jie
    Wang, Ruyang
    Ma, Peiyu
    Li, Hongliang
    Geng, Zhigang
    Zuo, Ming
    Bao, Jun
    Zhou, Shiming
    Zeng, Jie
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (21) : 9271 - 9279
  • [10] Highly Efficient Oxygen Evolution by a Thermocatalytic Process Cascaded Electrocatalysis Over Sulfur-Treated Fe-Based Metal-Organic-Frameworks
    Feng, Kun
    Zhang, Duo
    Liu, Fangfang
    Li, Hui
    Xu, Jiabin
    Xia, Yujian
    Li, Youyong
    Lin, Haiping
    Wang, Shuao
    Shao, Mingwang
    Kang, Zhenhui
    Zhong, Jun
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (16)