Asymptotic Normality of Parameter Estimators for Mixed Fractional Brownian Motion with Trend

被引:1
作者
Ralchenko, Kostiantyn [1 ]
Yakovliev, Mykyta [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Stat & Actuarial Math, 64-13 Volodymyrska St, UA-01601 Kiev, Ukraine
关键词
Fractional Brownian motion; Wiener process; mixed model; asymptotic distribu-tion; EQUITY WARRANTS; PRICING MODEL;
D O I
10.17713/ajs.v52iSI.1770
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the mixed fractional Brownian motion of the form Xt = & theta;t+& sigma;Wt+& kappa;BtH, driven by a standard Brownian motion W and a fractional Brownian motion BH with Hurst parameter H. We consider strongly consistent estimators of unknown model param-eters (& theta;, H, & sigma;, & kappa;) based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for H & ISIN; (0, 21).
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
[41]   Statistical inference on the drift parameter in fractional Brownian motion with a deterministic drift [J].
Stiburek, David .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (02) :892-905
[42]   On the maximum of the discretely sampled fractional Brownian motion with small Hurst parameter [J].
Borovkov, Konstantin ;
Zhitlukhin, Mikhail .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
[43]   On limit distributions of estimators in irregular statistical models and a new representation of fractional Brownian motion [J].
Kordzakhia, Nino E. ;
Kutoyants, Yury A. ;
Novikov, Alexander A. ;
Hin, Lin-Yee .
STATISTICS & PROBABILITY LETTERS, 2018, 139 :141-151
[45]   Asymptotic error distribution for the Riemann approximation of integrals driven by fractional Brownian motion [J].
Garino, Valentin ;
Nourdin, Ivan ;
Vallois, Pierre .
ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
[46]   Rate of convergence of Euler approximations of solution to mixed stochastic differential equation involving Brownian motion and fractional Brownian motion [J].
Mishura, Yuliya S. ;
Shevchenko, Georgiy M. .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2011, 19 (04) :387-406
[47]   Nonparametric estimation of trend for SDEs with delay driven by a fractional brownian motion with small noise [J].
Rao, B. L. S. Prakasa .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2022, 40 (06) :967-977
[48]   An Ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter [J].
Bender, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 104 (01) :81-106
[49]   Continuity in Law with Respect to the Hurst Parameter of the Local Time of the Fractional Brownian Motion [J].
Maria Jolis ;
Noèlia Viles .
Journal of Theoretical Probability, 2007, 20 :133-152
[50]   Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion [J].
Le Breton, A .
STATISTICS & PROBABILITY LETTERS, 1998, 38 (03) :263-274